Filtrations and Induced Maps Lecture 8 - CMSE 890

Prof. Elizabeth Munch

Michigan State University

Dept of Computational Mathematics, Science & Engineering

Thurs, Sep 18, 2025

z Munch (MSU-CMSE) Lec 8 Thurs, Sep 18, 2025 1/29

Goals

Goals for today:

- Filtrations
- Betti curves
- Induced Maps

Section 1

Filtrations

Simplicial Complex Filtration

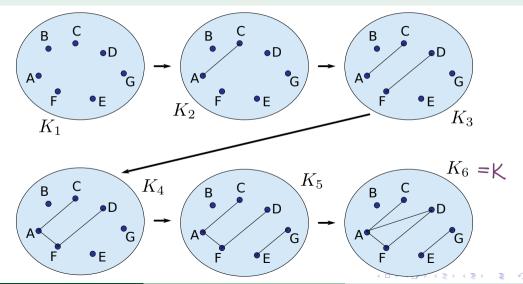
Definition

A filtration $\mathcal{F} = \mathcal{F}(K)$ of a simplicial complex K is a nested sequence of its subcomplexes

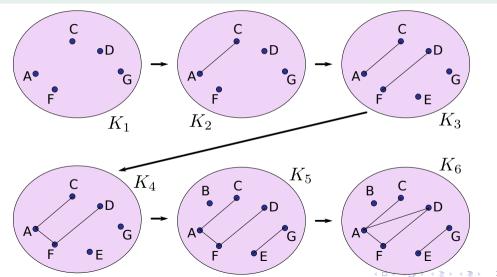
$$\mathcal{F}:\emptyset=K_0\subseteq K_1\subseteq K_2\subseteq\cdots\subseteq K_n=K.$$

 \mathcal{F} is called *simplex-wise* if $K_i \setminus K_{i-1}$ is empty or a single simplex.

Example 1

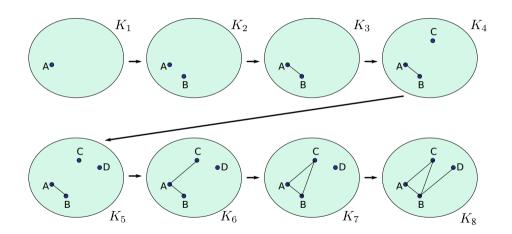


Example 3



6/29

Example 3

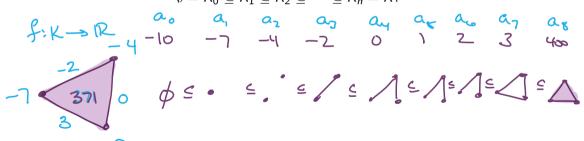


Thurs, Sep 18, 2025

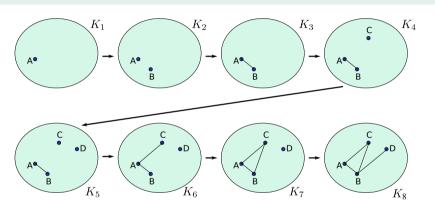
(Simplex-wise) monotone function

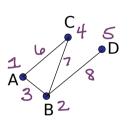
A simplex-wise function $f: K \to \mathbb{R}$ is called monotone if for every $\tau \leq \sigma$, $f(\tau) \leq f(\sigma)$. Cpx. Fix values $a_0 \le a_1 \le \cdots a_n$. Let $K_i = f^{-1}(-\infty, a_i]$. The sublevelset filtration induced by this function is defined to be

$$\emptyset = K_0 \subseteq K_1 \subseteq K_2 \subseteq \cdots \subseteq K_n = K.$$

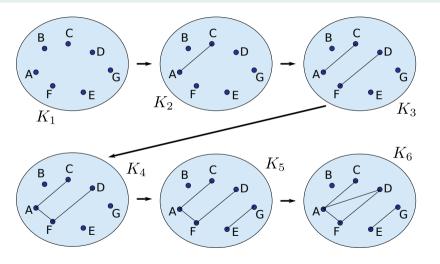


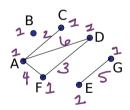
Example: Function inducing filtration





Tryit: Function inducing filtration

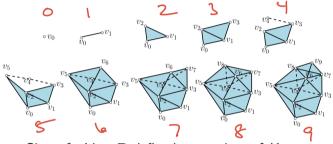




Thurs, Sep 18, 2025

Everything comes from a function

Vertex valued function (lower star filtration)



 $St(n) = \{Q \in K \mid A \in Q\}$ $St^{(n)} = \{Q \in K \mid A \in Q\}$

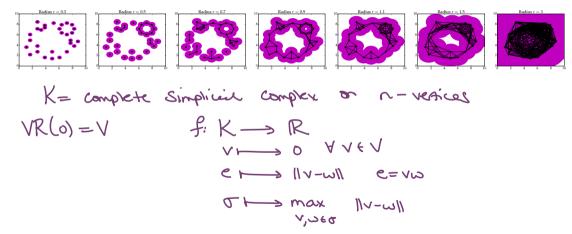
- Given $f: V \to \mathbb{R}$ defined on vertices of K.
- Extend to simplices by $f(\sigma) = \max_{v \in \sigma} f(v)$.

Liz Munch (MSU-CMSE)

Lec 8

Everything comes from a function

Rips complex filtration



Section 2

What to do with a filtration: Betti Curves

not cont!

Betti curve

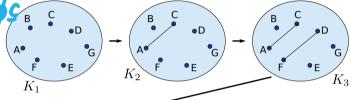
The p-th Betti curve is a function

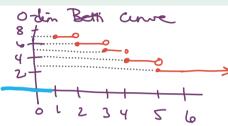
$$eta_p(\mathcal{F}): \blacksquare o \mathbb{Z} \ \mathcal{A}_p(\mathcal{K}_i) = \operatorname{rk}(\mathcal{H}_p(\mathcal{K}_i))$$

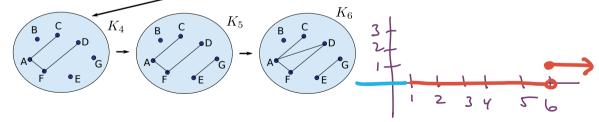
Liz Munch (MSU-CMSE) Lec 8 Thurs, Sep 18, 2025

Example: Betti curves

Write the 0th and 1st Betti curves for this filtration







Tryit: Betti curves

Write the 0th and 1st Betti curves for this filtration K_1 K_2 K_3 K_4 K_4 K_5 K_4 K_5 K_6 K_8 K_8 K_8 K_8 K_8 K_8 K_8 K_8 K_9 K_9

 K_8

Liz Munch (MSU-CMSE)

 K_5

 K_7

Section 3

Induced maps

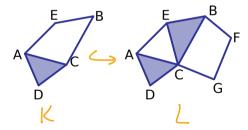
17 / 29

Liz Munch (MSU-CMSE) Lec 8 Thurs, Sep 18, 2025

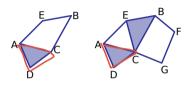
Simplicial maps

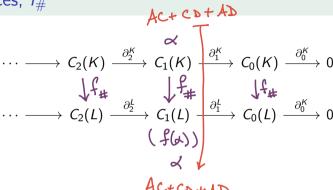
A simplicial map between abstract simplicial complexes $f: K \to L$ is induced by a map on the vertices $f: V(K) \to V(L)$.

(In this class, we care about inclusions....)



Big diagrams of vector spaces, $f_{\#}$





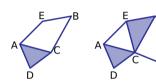
Induced map f

Given a simplicial map $f: K \to L$, the induced map on homology is defined by

$$f_*: H_p(K) \rightarrow H_p(L)$$

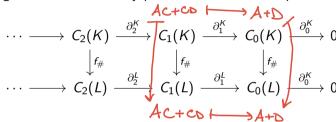
 $[\alpha] \mapsto [f_\#(\alpha)]$

Commutative diagram

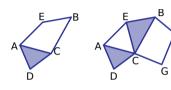


Claim:
$$f_{\#} \circ \partial^{K} = \partial^{L} \circ f_{\#}$$
.

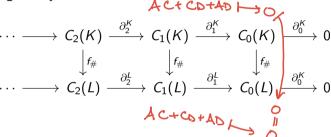
A diagram commutes if any path of functions are equal.



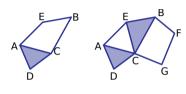
Effect on cycles



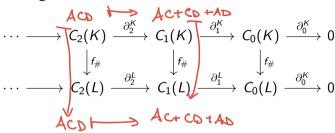
Cycles go to cycles!



Effect on boundaries



Boundaries go to boundaries!



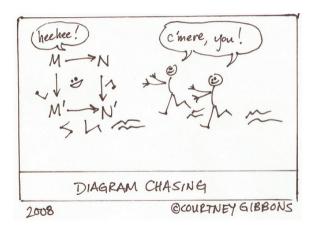
Repeat: Induced map

Given a simplicial map $f: K \to L$, the induced map on homology is defined by

$$f_*: H_p(K) \rightarrow H_p(L)$$

 $[\alpha] \mapsto [f_\#(\alpha)]$

Diagram Chasing



25 / 29

Try it:

If
$$H_1(K)$$
 generated by

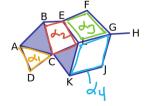
$$[\alpha_1] = [AC + CD + AD]$$

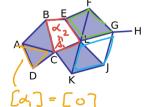
$$[\alpha_2] = [BE + EL + CL + CB]$$

$$[\alpha_3] = [EF + FG + GL + EL]$$

$$[\alpha_4] = [GL + GJ + JK + LK]$$

write the matrix representing $f_*: H_1(K) \to H_1(L)$ induced by inclusion.



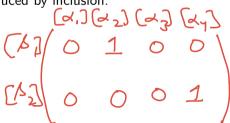


$$[A_3] = [a](EFL + LFG)$$

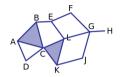
and $H_1(L)$ generated by

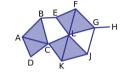
$$[\beta_1] = [BE + EL + CL + CB]$$

$$[\beta_2] = [GL + GJ + LJ]$$



More spare paper





$$\cdots \longrightarrow C_{2}(K) \xrightarrow{\partial_{2}^{K}} C_{1}(K) \xrightarrow{\partial_{1}^{K}} C_{0}(K) \xrightarrow{\partial_{0}^{K}} C_{0}(K) \xrightarrow{\partial_{0}$$

Next time: Persistence module

Given a filtration \mathcal{F} , the p-dimensional persistence module is

$$H_p(\mathcal{F}): 0 = H_p(K_0) \rightarrow H_p(K_1) \rightarrow H_p(K_2) \cdots \rightarrow H_p(K_n) = H_p(K)$$

with maps induced by inclusion.

28 / 29

Liz Munch (MSU-CMSE) Lec 8 Thurs, Sep 18, 2025

For next time

- No class 9/23 or 9/25
- Everyone homework:
 - Find the AATRN youtube channel
 - Find one of the Tutorial-a-thon playlists
 - ▶ Watch one video (or more, they're largely less than 15 minutes long). Write a few sentences about what you learned and any questions you have and post it with a link to the video on our slack channel.
 - Comment on at least one other person's post.

29 / 29

Liz Munch (MSU-CMSE) Lec 8 Thurs, Sep 18, 2025