Here Comes the Homology

Are we actually going to get there? Lecture 6 - CMSE 890

Prof. Elizabeth Munch

Michigan State University

::

Dept of Computational Mathematics, Science & Engineering

Thurs, Sep 11, 2025

Goals

Goals for today:

• Homology!

Section 1

More on the boundary map

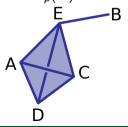
p-Chains

Let K be a simplicial complex and fix a dimension p.

• A p-chain is a formal sum of p-simplices in K, written

$$\alpha = \sum a_i \sigma_i$$

- p-chains are added component-wise: if $\alpha = \sum a_i \sigma_i$ and $\beta = \sum b_i \sigma_i$, then $\alpha + \beta = \sum (a_i + b_i)\sigma_i$
- The collection of p-chains with addition is called the p^{th} -chain group (vector space), $C_p(K)$.



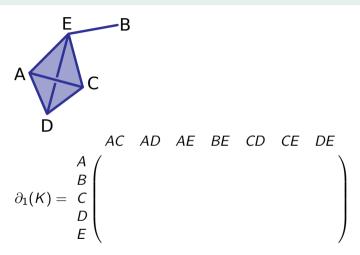
Boundary maps¹

$$\begin{array}{ccc} \partial_p: & C_p(K) & \to & C_{p-1}(K) \\ \sigma = [v_0, \cdots, v_p] & \mapsto & \sum_{j=0}^p [v_0, \cdots, \widehat{v_j}, \cdots v_p] \end{array}$$

Liz Munch (MSU-CMSE) Lec 8 Thurs, Sep 11, 2025

¹Warning: We are assuming \mathbb{Z}_2 coefficients from now on!

Matrix representation



Chain complex

$$\cdots \xrightarrow{\partial_{p+2}} C_{p+1}(X) \xrightarrow{\partial_{p+1}} C_p(X) \xrightarrow{\partial_p} C_{p-1}(X) \xrightarrow{\partial_{p-1}} \cdots$$

$$\partial_p: C_p(K) \to C_{p-1}(K)$$

$$\sigma = [v_0, \cdots, v_p] \mapsto \sum_{j=0}^p [v_0, \cdots, \widehat{v_j}, \cdots v_p]$$

Section 2

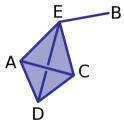
Cycles and Boundaries

Important subspaces for a linear transformation

- Image
- Kernel

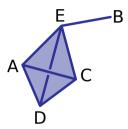
Cycles

A chain in the kernel of ∂_p is called a p-cycle. $C_{p+1}(K) \xrightarrow{\partial_{p+1}} C_p(K) \xrightarrow{\partial_p} C_{p-1}(K)$

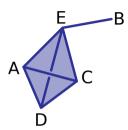


The collection of *p*-cycles forms a subspace $Z_p(K) \subseteq C_p(K)$.

What is a 2-cycle?

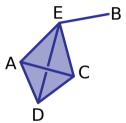


More work space if needed



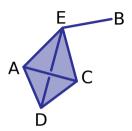
Boundaries

A chain in the image of ∂_{p+1} is called a p-boundary. $C_{p+1}(K) \stackrel{\partial_{p+1}}{\longrightarrow} C_p(K) \stackrel{\partial_p}{\longrightarrow} C_{p-1}(K)$



The collection of *p*-boundaries forms a subspace $B_p(K) \subseteq C_p(K)$.

More work space



Nifty trick

Theorem

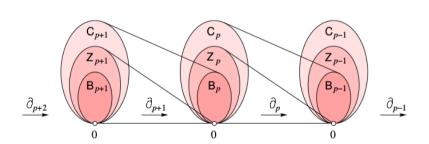
 $\partial_p \partial_{p+1}(\alpha) = 0$ for every (p+1)-chain α .

Translation

Every *p*-boundary is a *p*-cycle.

 $B_p(K) \subseteq Z_p(K) \subseteq C_p(K)$

$$C_{p+1}(K) \stackrel{\partial_{p+1}}{\longrightarrow} C_p(K) \stackrel{\partial_p}{\longrightarrow} C_{p-1}(K)$$

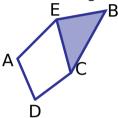


Try it: Cycles and boundaries

What are the generators of $B_1(K)$? Of $Z_1(K)$?

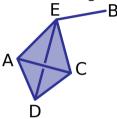
Try it: Cycles and boundaries

What are the generators of $B_1(K)$? Of $Z_1(K)$?



Try it: Cycles and boundaries

What are the generators of $B_1(K)$? Of $Z_1(K)$?



Homework (In case we only get this far)

• DW 2.6.3) Let K be the simplicial complex of a tetrahedron. Write a basis for the chain groups C_1 and C_2 ; boundary groups B_1 and B_2 ; and cycle groups Z_1 and Z_2 . Write the boundary matrix representing the boundary operator ∂_2 with rows and columns representing bases of C_1 and C_2 respectively.

Section 3

Homology for real now

Quotient space

Let V be a vector space over a field k.

Let $W \subset V$ be a subspace.

Define \sim on V by $x \sim y$ iff $x - y \in W$.

The equivalence class of x is denoted

$$[x] = x + W = \{x + w : w \in W\}.$$

The quotient space V/W is then defined as $\{[x] \mid x \in V\}$. This is also a vector space with:

- Scalar multiplication:
- Addition:

Homology

Definition

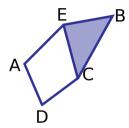
The p^{th} homology group is the quotient space

$$H_p(K) := Z_p(K)/B_p(K)$$

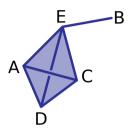
Spare blank page

Tryit: What is $H_1(K)$?

Tryit: What is $H_1(K)$?



Tryit: What is $H_2(K)$?



Homework

• Almost certainly didn't finish all the examples above....