### More Reeb Graphs

Lecture 17 - CMSE 890

Prof. Elizabeth Munch

Michigan State University

Dept of Computational Mathematics, Science & Engineering

Thurs, Nov 6, 2025

1/41

#### Check-in

#### Goals for today:

- 7.1 More Reeb Graph Definitions
- 7.3 Reeb Graph Metrics

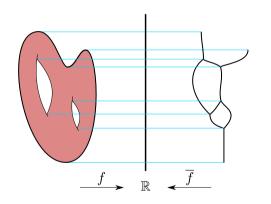
2/41

#### Section 1

Reeb graphs

Liz Munch (MSU-CMSE

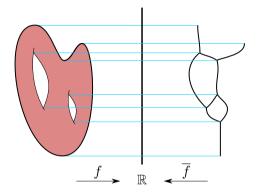
### Reeb graph definition



Given a function  $f:X\to\mathbb{R}$ . Define an equivalence relation  $\sim$  by  $s\sim y$  iff

- $f(x) = f(y) = \alpha$
- x and y are in the same connected component of the level set  $f^{-1}(\alpha)$ .
- Let [x] denote the equivalence class of x ∈ X.
- The Reeb graph  $R_f$  of  $f:X\to\mathbb{R}$  is the quotient space  $X/\sim$ .
- Let  $\Phi: X \to R_f$ ,  $x \to [x]$  be the quotient map.

# Induced map $ilde{f}:R_f o\mathbb{R}$



Lazy notation: Just write  $f: R_f \to \mathbb{R}$ 

5 / 41

### What I mean by a Reeb graph....

Discrete vs continuous viewpoints

Quotient Space  $X/\sim$  with function  $\overline{f}:[a]\to f(a)$ 

# Graph (V, E) with function $f: V \to \mathbb{R}$

• For any edge uv,  $f(u) \neq f(v)$ 

6/41

### Up and down degree

Given a node  $x \in V$  in the vertex set  $V := V(R_f)$  of the Reeb graph  $R_f$ ,

- up-degree of x is the number of edges (xu) incident to x with f(u) > f(x)
- down-degree of x is the number of edges (xu) incident to x with f(u) < f(x)

7 / 41

### Regular vs critical node

#### A node is

- regular if both of its up-degree and down-degree equal to 1
- critical otherwise.

8 / 41

### Types of critical points

#### A critical point is a

- a minimum if it has down-degree 0
- a maximum if it has up-degree 0
- a down-fork if it has down-degree larger than 1
- an up-fork if it has up-degree larger than 1

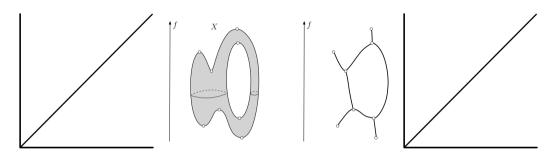
Warning: a critical point can be denegnerate, i.e. have more that one type of criticality

Liz Munch (MSU-CMSE)

Lec 17

Thurs, Nov 6, 2025

### Comparing the sublevelset persistence diagrams



### Relationship between Betti numbers

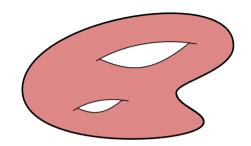
#### Theorem

For a tame function  $f: X \to \mathbb{R}$ ,  $\beta_0(X) = \beta_0(R_f)$  and  $\beta_1(X) \ge \beta_1(R_f)$ .

11 / 41

A note on contractible X

### A Reeb graph is dependent on the function



#### What if X is a 2-manifold

#### Theorem

Let  $f: X \to \mathbb{R}$  be a Morse function on a connected, compact 2-manifold.

- If X is orientable,  $\beta_1(R_f) = \beta_1(X)/2$
- If X is not orientable,  $\beta_1(R_f) \leq \beta_1(X)/2$

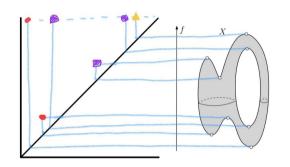
Note that this is independent of the function!

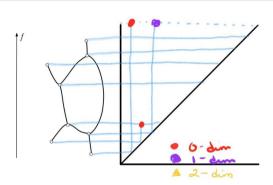


14 / 41

### Back to that example

Unsatisfying loss of information





#### Section 2

Reeb Graph Metrics

iz Munch (MSU-CMSE) Lec 17 Thurs, Nov 6, 2025 16/41

### Distances Between Reeb Graphs

#### Definition

A metric on a set M is a function  $d: M \times M \to \mathbb{R}_{>0}$  such that

- $d(x, y) \ge 0$  and d(x, y) = 0 iff x = y
- d(x,y) = d(y,x)
- $d(x,z) \le d(x,y) + d(y,z)$

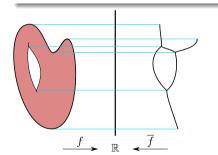
17 / 41

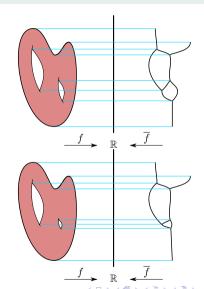
### Reeb graph metrics

#### Goal

Create and study Reeb graph metrics:

• 
$$d((G, f), (G', f')) = 0$$
 iff  $G \cong G'$  and  $f = f'$ 





### Reeb graph metrics

Metrics for Reeb graphs  $d_I$  interleaving  $d_{FD}$  functional distortion  $d_G$  edit  $d_B$  bottleneck

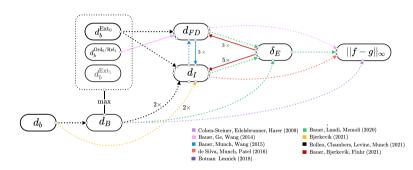


Figure inspired by U. Bauer's talk, SoCG 2020; Drawn by Brian Bollen, arXiv:2110.05631

iz Munch (MSU-CMSE) Lec 17 Thurs, Nov 6, 2025 19 / 41

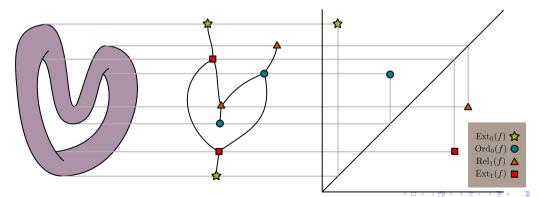
#### Section 3

Bottleneck distance

#### Extended Persistence

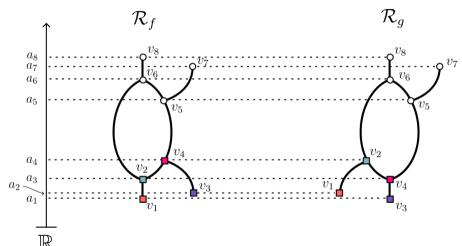
Represent your Reeb graph as its extended persistence diagram Compute (label preserving) bottleneck distance

$$d_B(R_f,R_g) := d_B(\mathit{Dgm}(R_f),\mathit{Dgm}(R_g))$$



### Not a perfect representation

Two Reeb graphs with the same extended persistence diagram



Pros & Cons

#### Section 4

Interleaving Distance

z Munch (MSU-CMSE) Lec 17 Thurs, Nov 6, 2025 24/41

Definition by example



- Given Reeb graph (G, f)
- Thicken:

$$f_{\varepsilon}: G \times [-\varepsilon, \varepsilon] \longrightarrow \mathbb{R}$$

$$(x, t) \longmapsto f(x) + t$$

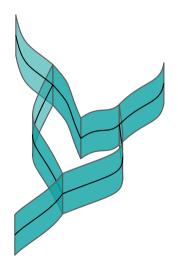
• Take Reeb graph of  $(G \times [-\varepsilon, \varepsilon], f_{\varepsilon})$ 

25 / 41

Liz Munch (MSU-CMSE)

# Smoothing Reeb Graphs: $S_{\varepsilon}$

Definition by example



- Given Reeb graph (G, f)
- Thicken:

$$f_{\varepsilon}: G \times [-\varepsilon, \varepsilon] \longrightarrow \mathbb{R}$$

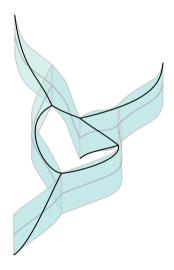
$$(x, t) \longmapsto f(x) + t$$

• Take Reeb graph of  $(G \times [-\varepsilon, \varepsilon], f_{\varepsilon})$ 

z Munch (MSU-CMSE) Lec 17 Thurs, Nov 6, 2025 25 / 41

# Smoothing Reeb Graphs: $S_{\varepsilon}$

Definition by example



- Given Reeb graph (G, f)
- Thicken:

$$f_{\varepsilon}: G \times [-\varepsilon, \varepsilon] \longrightarrow \mathbb{R}$$

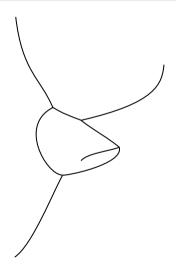
$$(x, t) \longmapsto f(x) + t$$

• Take Reeb graph of  $(G \times [-\varepsilon, \varepsilon], f_{\varepsilon})$ 

iz Munch (MSU-CMSE) Lec 17 Thurs, Nov 6, 2025 25 / 41

# Smoothing Reeb Graphs: $S_{\varepsilon}$

Definition by example



- Given Reeb graph (G, f)
- Thicken:

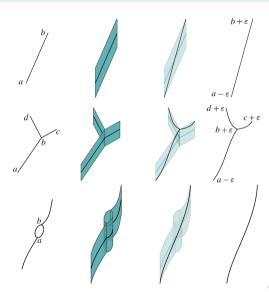
$$f_{\varepsilon}: G \times [-\varepsilon, \varepsilon] \longrightarrow \mathbb{R}$$

$$(x, t) \longmapsto f(x) + t$$

• Take Reeb graph of  $(G \times [-\varepsilon, \varepsilon], f_{\varepsilon})$ 

iz Munch (MSU-CMSE) Lec 17 Thurs, Nov 6, 2025 25 / 41

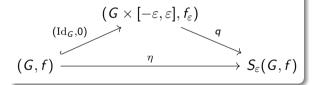
### More Smoothing Examples



### Smoothing definition

#### Definition

The  $\varepsilon$ -smoothed Reeb graph of (G, f) is the Reeb graph of  $(G \times [-\varepsilon, \varepsilon], f_{\varepsilon})$ 

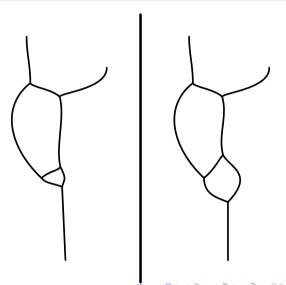


iz Munch (MSU-CMSE) Lec 17 Thurs, Nov 6, 2025 27 / 41

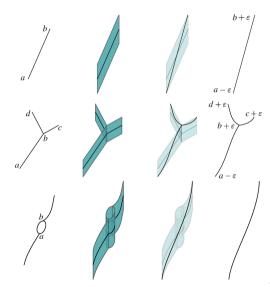
### Function Preserving Maps

#### **Definition**

A morphism  $\varphi: (G, f) \to (H, g)$  is a map  $\varphi: G \to H$  which is function preserving  $(f = g \circ \varphi)$ .



# Smoothings Automatically Come With Morphisms



Liz Munch (MSU-CMSE

### Reeb-interleaving

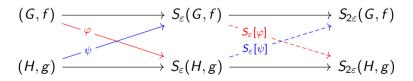
#### **Definition**

Let (G, f), (H, g) be given.

An  $\varepsilon$ -interleaving consists of two morphisms

$$\varphi$$
:  $(G, f) \to S_{\varepsilon}(H, g)$ ;  $\psi$ :  $(H, g) \to S_{\varepsilon}(G, f)$ 

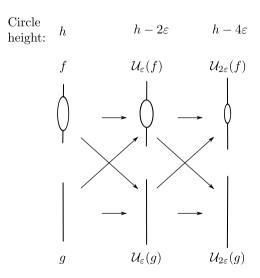
such that



commutes. The interleaving distance is defined to be

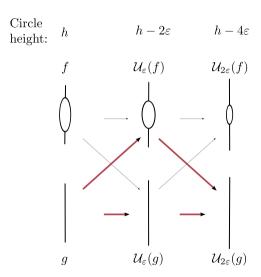
$$d_l((G, f), (H, g)) = \inf\{\varepsilon \mid (G, f) \text{ and } (H, g) \text{ are } \varepsilon\text{-interleaved}\}.$$

### Building an interleaving



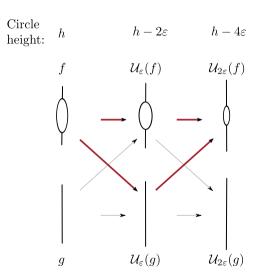
Thurs, Nov 6, 2025

### Building an interleaving



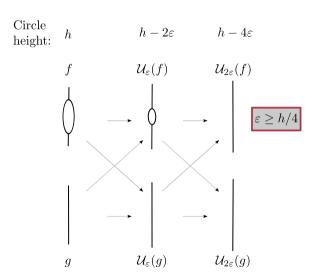
Thurs, Nov 6, 2025

### Building an interleaving



Thurs, Nov 6, 2025

# Building an interleaving



# **Properties**

#### Theorem (de Silva, EM, Patel 2016)

The interleaving distance is an extended metric.

$$d_I((G, f), (H, g)) < \infty$$
  

$$\Leftrightarrow$$
  

$$\beta_0(G) = \beta_0(H)$$

32 / 41

# **Properties**

#### Theorem (de Silva, EM, Patel 2016)

The interleaving distance is an **extended metric**.

$$d_{I}((G, f), (H, g)) < \infty$$
  

$$\Leftrightarrow$$
  

$$\beta_{0}(G) = \beta_{0}(H)$$

### Theorem (dS, EM, P 2016)

Given  $f, g: G \to \mathbb{R}$ , the interleaving distance is **stable**, i.e.

$$d_I(\mathcal{R}(G,f),\mathcal{R}(G,g)) \leq ||f-g||_{\infty}.$$

32 / 41

Pros & Cons

### Section 5

Functional Distortion Distance

# Distance in the Reeb graph

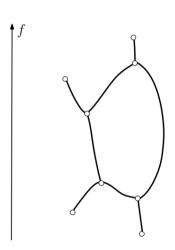
#### **Definition**

Let  $u, v \in \mathcal{R}_f$  (not necessarily vertices) and let  $\pi$  be a continuous path between u and v, denoted  $u \rightsquigarrow v$ .

range(
$$\pi$$
) = [min <sub>$x \in \pi$</sub>   $f(x)$ , max <sub>$x \in \pi$</sub>   $f(x)$ ].  
height( $\pi$ ) = max <sub>$x \in \pi$</sub>   $f(x)$  - min <sub>$x \in \pi$</sub>   $f(x)$   
Distance between  $\mu$  and  $\nu$ :

$$d_f(u, v) = \min_{\pi: u \leadsto v} \operatorname{height}(\pi),$$

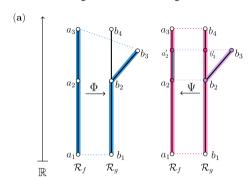
where  $\pi$  ranges over all continuous paths from u to v.

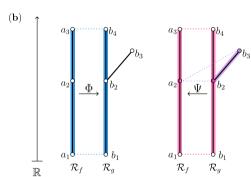


35 / 41

# Continuous maps

 $\Phi: \mathcal{R}_f \to \mathcal{R}_g$ ,  $\Psi: \mathcal{R}_f \to \mathcal{R}_g$  continuous maps (not necessarily function preserving).





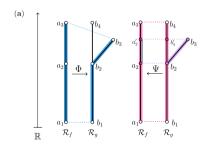
Liz Munch (MSU-CMSE)

 $\textit{G}(\Phi, \Psi) = \{(x, \Phi(x)) \mid x \in \mathcal{R}_f\} \cup \{(\Psi(y), y) \mid y \in \mathcal{R}_g\}$ 

#### **Definition**

The **point distortion**  $\lambda$  between  $(x,y),(x',y')\in G(\Phi,\Psi)$  is defined as

$$\lambda((x,y),(x',y')) = \frac{1}{2}|d_f(x,x') - d_g(y,y')|.$$

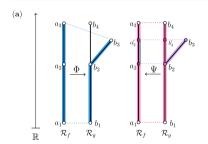


37 / 41

#### **Definition**

The **map distortion**  $D(\Phi, \Psi)$  between  $\mathcal{R}_f$  and  $\mathcal{R}_g$  is the supremum of point distortions ranging over all possible pairs in the supergraph  $G(\Phi, \Psi)$ . That is,

$$D(\Phi, \Psi) = \sup_{(x,y),(x',y') \in G(\Phi,\Psi)} \lambda((x,y),(x',y')).$$



iz Munch (MSU-CMSE) Lec 17 Thurs, Nov 6, 2025 38/41

#### **Definition**

The **functional distortion distance** is defined as

$$d_{FD}(\mathcal{R}_f,\mathcal{R}_g) = \inf_{\Phi,\Psi} \max\{D(\Phi,\Psi), ||f-g\circ\Phi||_{\infty}, ||f\circ\Psi-g||_{\infty}\},$$

where  $\Phi$  and  $\Psi$  range over all continuous maps between  $\mathcal{R}_f$  and  $\mathcal{R}_g$ .

Liz Munch (MSU-CMSE) Lec 17 Thurs, Nov 6, 2025 39 / 41

Pros & Cons

40 / 41

## TL;DR

Metrics for Reeb graphs  $d_I$  interleaving  $d_{FD}$  functional distortion  $d_G$  edit  $d_B$  bottleneck

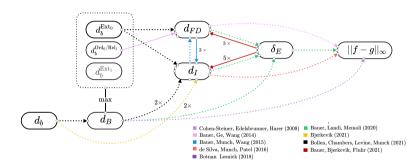


Figure inspired by U. Bauer's talk, SoCG 2020; Drawn by Brian Bollen, arXiv:2110.05631