Stats and ML for Persistence

Lecture 14 - CMSE 890

Prof. Elizabeth Munch

Michigan State University

::

Dept of Computational Mathematics, Science & Engineering

Thurs, Oct 16, 2025

iz Munch (MSU-CMSE) Lec 14 Thurs, Oct 16, 2025 1/45

Goals for today

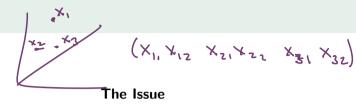
9:30 Thirsday get

Goals for today:

- Today: ML for Persistence
- Sorta follows Ch 13.1 but not entirely

Liz Munch (MSU-CMSE)

Questions and tasks



Tasks

- Classification
- Regression

- Most ML methods want vectors in \mathbb{R}^n .
- That implies some sorting or ordering, which we don't want for the persistence diagrams.
- Implies the same *n* for all data points, but we have a variable number of points in the diagrams.
- Usually, we need the data points to come from a vector space, but persistence diagrams don't.

It's even worse

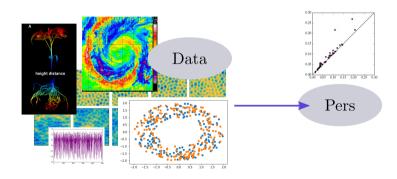
- Usually want ML inputs to come from a Banach space (complete normed vector space) or a Hilbert space (vector space with inner product and limits).
- Note all Hilbert spaces are Banach spaces, but not all Banach spaces are Hilbert spaces.

= wass it p < 00 Theorem (Bubenik Wagner 2020) W_n) does not admit an isometric embedding into a Hilbert space for any 1 .

4 / 45

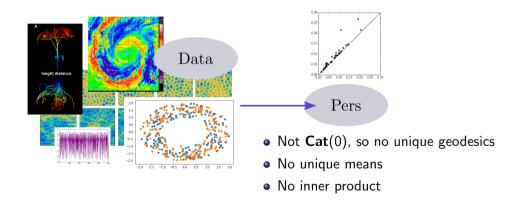
Liz Munch (MSU-CMSE) Lec 14 Thurs, Oct 16, 2025

Here be dragons.....



Liz Munch (MSU-CMSE) Lec 14 Thurs, Oct 16, 2025 5 / 45

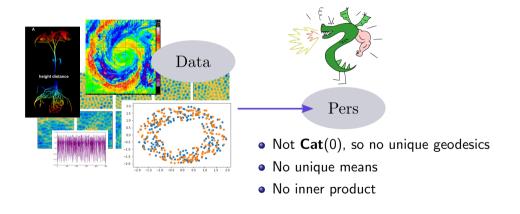
Here be dragons.....



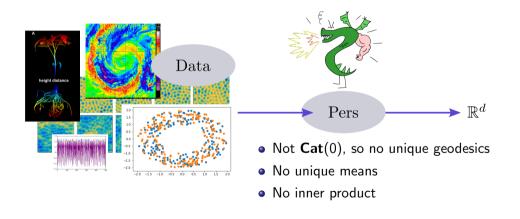
5 / 45

Liz Munch (MSU-CMSE) Lec 14 Thurs, Oct 16, 2025

Here be dragons.....



Here be dragons.....



Turning persistence diagrams into something else

- 1 Algebraic structures Carlson coordinates
- 2 Landscapes
- Persistence Images
- Tent Functions
- The point

Section 1

Algebraic structures

Liz Munch (MSU-CMSE)

What if we just forget about the diagram?

 \bullet Just treat a persistence diagram as a set of points in \mathbb{R}^2

$$\{(x_1, y_1), \cdots, (x_n, y_n)\} \rightsquigarrow (x_1, y_1, x_2, y_2, \cdots, x_n, y_n) \in \mathbb{R}^{2n}$$

- Problems:
 - Order shouldn't matter

n isn't fixed

8 / 45

Liz Munch (MSU-CMSE) Lec 14 Thurs, Oct 16, 2025

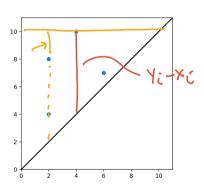
Algebraic geometry to the rescue!

• Associate persistence diagrams to $k[x_1, y_1, x_2, y_2, \cdots]$ \sim eg. $3x_1 - 2x_2y_1^2 + 17x_1^2$

• Come up with functions on the points that don't care about order

• ••	ane up with fulletions on the points tha			
🕝 Inte	ernational Press publishers of scholarly mathematical and scientific journals and books			
Home	CONTENTS ONLINE			
Journals	HHA Home Page HHA Content Home All HHA Volumes This Volume This Issue			
Journal Content Online	Homology, Homotopy and Applications Volume 18 (2016)			
Books	Number 1			
Information & Ordering	The ring of algebraic functions on persistence bar codes Pages: 381 - 402 OI: http://de.doi.org/10.4310/HHA.2016.v18.nl.s21			
Company Contacts	Authors Aaron Adcock (Facebook, Inc., New York, N.Y., U.S.A.)			
Join Our Mailing Lists 🗹	Erik Carlsson (Center of Mathematical Sciences and Applications, Harvard University, Cambridge, Massachusetts, U.S.A.)			
A 💆	Gunnar Carlsson (Department of Mathematics, Stanford University, Stanford, California, U.S.A.)			
	Abstract			
	Passistant hamalagu is a rapidly dayalaning field in the study of numerous kinds of data sate. It			

Example



$$\{(2,4),(2,8),(4,10),(6,7)\}$$

• Ex.
$$\sum_{i} (x_i)(y_i - x_i)$$

• Ex.
$$\sum_{i} (y_{\text{max}} - y_{i})(y_{i} - x_{i})$$

Lec 14

Mnist Data

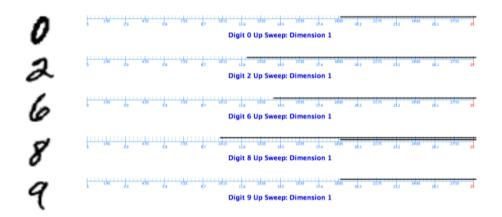
Build complex:

- Put vertex at each white pixel
- Connect vertices if their pixels touch.
- My assumption: clique complex after that Filtration:
 - Pick cardinal direction
 - Add vertices in order in that direction
 - Gives 4 each 0- and 1-dimensional diagrams

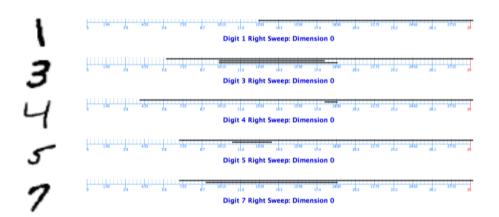
11 / 45

Liz Munch (MSU-CMSE) Lec 14 Thurs, Oct 16, 2025

Results - Loops



Results - Non-loops



Features - Digits example

For each digit

Diagrams:

- 4 directions
- 0- and 1-dimensional diagrams for each direction
- = 8 diagrams each

Features:

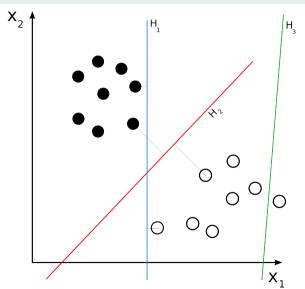
- Each Diagram has 4 features
- = 32 features total

Features

 $y_{\text{max}} = \text{max}$ death for all diagrams Diagrams $X = \{(x_i, y_i)\}.$

- $\sum x_i(y_i x_i)$
- $\bullet \sum x_i^2 (y_i x_i)^4$
- $\sum (y_{max} y_i)^2 (y_i x_i)^4$

Support Vector Machine (SVM)



15 / 45

z Munch (MSU-CMSE) Lec 14 Thurs, Oct 16, 2025

Results

Table 1: Classification Accuracy of two SVM Kernels

SVM	1000 Digits	5000 Digits	10000 Digits
Gaussian	87.70%	91.54%	92.04%
Polynomial	88.00%	91.62%	92.10%

2 5 7 7 4

(a) Stylistic Problems

(b) Spurious Topological Changes

Figure 5: Common Misclassifications

Pros & Cons

Pros

- Incredibly simple to explain
- Works well in lots of simple cases
- Fast to compute

Cons

Not stable with respect to distances

17 / 45

Liz Munch (MSU-CMSE) Lec 14 Thurs, Oct 16, 2025

Section 2

Landscapes

Paper

Journal of Machine Learning Research 16 (2015) 77-102

Submitted 7/14; Published 1/15

Statistical Topological Data Analysis using Persistence Landscapes

Peter Bubenik

PETER.BUBENIK@GMAIL.COM

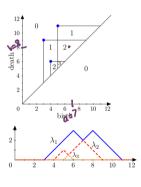
Department of Mathematics Cleveland State University Cleveland, OH 44115-2214, USA

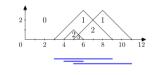
Editor: David Dunson

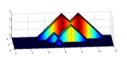
Abstract

We define a new topological summary for data that we call the persistence landscape. Since this summary lies in a vector space, it is easy to combine with tools from statistics and machine learning, in contrast to the standard topological summaries. Viewed as a random variable with values in a Banach space, this summary obeys a strong law of large numbers and a central limit theorem. We show how a number of standard statistical tests can be used for statistical informacy using this summary. We also prose that this summary is

Definition by picture



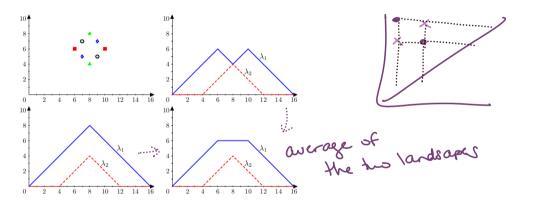




- Take diagram
- Rank function: $\beta^{a,b} = \dim(\operatorname{Im} (H_k(X_a) \to H_k(X_b)))$
- Rotate $(x,y) \mapsto \left(\frac{x+y}{2}, \frac{y-x}{2}\right)$
- ullet $\lambda: \mathbb{N} imes \mathbb{R} o \mathbb{R}$, $(k,t) o \lambda_k(t)$
- $\lambda_k(t) = \sup(m \geq 0 \mid \beta^{t-m,t+m} \geq k)$

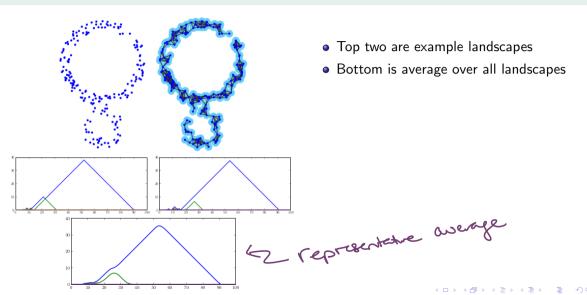
Liz Munch (MSU-CMSE)

Everyone's favorite example

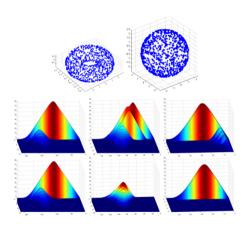


Liz Munch (MSU-CMSE)

200 points, repeated 100 times



Torus and Sphere



Average landscapes:

- Row 1: torus; Row 2: Sphere
- Col: 0-, 1-, and 2-dimensional diagram

iz Munch (MSU-CMSE) Lec 14 Thurs, Oct 16, 2025 23/45

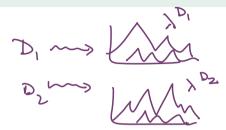
Stability

Define

$$\|\lambda^D\|_p = \left(\sum_{k=1}^\infty \|\lambda_k^D\|_p^p\right)^{1/p}$$

Then

$$\|\lambda^{D_1}-\lambda^{D_2}\|_{\infty}\leq d_B(D_1,D_2).$$



Liz Munch (MSU-CMSE)

Pros & Cons

Pros

- Can take averages, do ML etc
- Probably the #1 used ML featurization approach
- Stability

Cons

 Average might not be something that comes from a diagram

25 / 45

Section 3

Persistence Images

Liz Munch (MSU-CMSE

Images paper

Journal of Machine Learning Research 18 (2017) 1-35

Submitted 7/16; Published 2/17

Persistence Images: A Stable Vector Representation of Persistent Homology

Henry Adams
Tegan Emerson
Michael Kirby
Rachel Neville
Chris Peterson
Patrick Shipman
Department of Mathematics
Colorado State University
1851 Company Belivers

ADAMS@MATH.COLOSTATE.EDU EMERSON@MATH.COLOSTATE.EDU KIRBY@MATH.COLOSTATE.EDU NEVILLE@MATH.COLOSTATE.EDU PETERSON@MATH.COLOSTATE.EDU SHIPMAN@MATH.COLOSTATE.EDU SHIPMAN@MATH.COLOSTATE.EDU

Fort Collins, CO 80523-1874 Sofya Chepushtanova

SOFYA.CHEPUSHTANOVA@WILKES.EDU

Department of Mathematics and Computer Science Willes University

84 West South Street

Wilkes-Barre, PA 18766, USA

Eric Hanson

ERIC.HANSON@TCU.EDU

Department of Mathematics Texas Christian University Ray 298900

Box 298900

Fort Worth, TX 76129

Francis Motta MOTTA@MATH.DUKE.EDU

Department of Mathematics Duke University Durham, NC 27708, USA

LZIEGEL 1 ÜMACALESTER. EDU

Lori Ziegelmeier Department of Mathematics, Statistics, and Computer Science

Department of Mathematics, Statistics, and Computer Science Macalester College

1600 Grand Avenue

Saint Paul, MN 55105, USA

Editor: Michael Mahoney

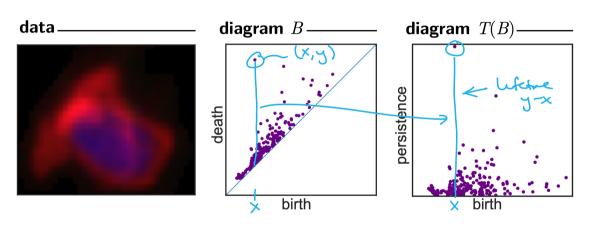
Thurs. Oct 16, 2025

Their view on the problem

Problem Statement: How can we represent a persistence diagram so that

- ullet the output of the representation is a vector in \mathbb{R}^n ,
- the representation is stable with respect to input noise,
- the representation is efficient to compute,
- the representation maintains an interpretable connection to the original PD, and
- the representation allows one to adjust the relative importance of points in different regions of the PD?

Liz Munch (MSU-CMSE)

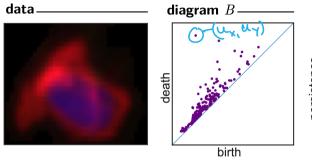


• Transform: $T(X) = \{(x, y - x) \mid (x, y) \in X\}$

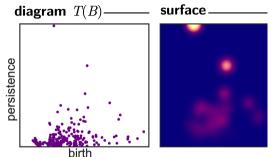
29 / 45

Liz Munch (MSU-CMSE) Lec 14 Thurs, Oct 16, 2025

Persistence surface



- Weight function e.g., $f(u) = u_y/\text{maxPers}$ • Gaussian: $\varphi_u(z) = u_y/\text{maxPers}$
- Gaussian: $\varphi_u(z) = \frac{1}{2\pi\sigma^2} \exp(-[(x u_x)^2 + (y u_y)^2]/(2\sigma^2))$



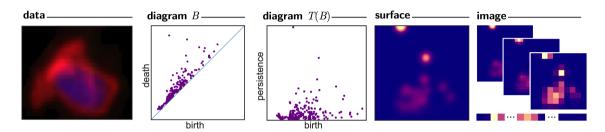
For a Pers Dgm X, the persistence surface is

$$\mu_X: \mathbb{R}^2 \to \mathbb{R}$$

$$x \mapsto \sum_{u \in T(X)} f(u)\varphi_u(z)$$

30 / 45

Persistence Images



- Grid up box
- Integrate the function in each box
- Treat the outputs as a vector

31 / 45

Liz Munch (MSU-CMSE) Lec 14 Thurs, Oct 16, 2025

Example: linked twist map

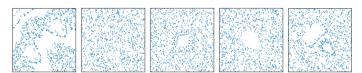


Figure 4: Examples of the first 1000 iterations, $\{(x_n, y_n) : n = 0, ..., 1000\}$, of the linked twist map with parameter values r = 2, 3.5, 4.0, 4.1 and 4.3, respectively.

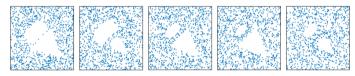


Figure 5: Truncated orbits, $\{(x_n, y_n) : n = 0, \dots, 1000\}$, of the linked twist map with fixed r = 4.3 for different initial conditions (x_0, y_0) .

Generate point clouds from a discrete dynamical system

$$x_{n+1} = x_n + ry_n(1 - y_n) \mod 1$$

 $y_{n+1} = y_n + rx_n(1 - x_n) \mod 1$

- \bullet Goal: Classify trials by r
- Scores
 - ▶ Both H_0 and H_1 : 82.5%
 - ► *H*₀: 49.8%
 - ► *H*₁: 65.7%

Stability

Theorem 13.3. Suppose persistence images are computed with the normalized Gaussian distribution with variance σ^2 and weight function $\omega : \mathbb{R}^2 \to \mathbb{R}$. Then the persistence images are stable w.r.t. the 1-Wasserstein distance between persistence diagrams. More precisely, given two finite and bounded persistence diagrams D and E, we have:

$$\|\operatorname{I}_D - \operatorname{I}_E\|_1 \leq \left(\sqrt{5}|\nabla \omega| + \sqrt{\frac{10}{\pi}} \frac{\|\omega\|_{\infty}}{\sigma}\right) \cdot \mathsf{d}_{W,1}(D, E).$$

Here, $\nabla \omega$ stands for the gradient of ω , and $|\nabla \omega| = \sup_{z \in \mathbb{R}^2} ||\nabla \omega||_2$ is the maximum norm of the gradient vector of ω at any point in \mathbb{R}^2 . The same upper bound holds for $||\mathbf{I}_D - \mathbf{I}_E||_2$ and $||\mathbf{I}_D - \mathbf{I}_E||_\infty$ as well.

Liz Munch (MSU-CMSE)

Section 4

Tent Functions

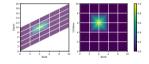
Liz Munch (MSU-CMSE)

Paper

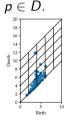
Template functions

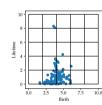
Step 1: Choose collection of functions: $\{f_i\}$

- $f_i: \mathbb{Z} \to \mathbb{R}$
- compact support



Step 2: Evaluate each function f at each point in each diagram: f(p) for





Step 3: For fixed diagram D and function f, sum up for all points in diagram:

$$u_f(D) = \sum_{p \in D} f(p)$$

Result:

$$\{f_i\}_{i=1}^k$$

$$\{f_i\}_{i=1}^k \longrightarrow D \mapsto (\nu_{f_1}(D), \nu_{f_2}(D), \cdots, \nu_{f_k}(D))$$

Template function definition

- ullet \mathcal{D} : Space of persistence diagrams
- $C_c(\mathbb{W})$: functions from $\mathbb{W} = \mathbb{Z}$ to \mathbb{R} with compact support

Definition

A **coordinate system** for \mathcal{D} is a collection $\mathcal{F} \subset \mathcal{C}(\mathcal{D}, \mathbb{R})$ which *separates points*.

$$D \neq D' \in \mathcal{D}$$
, then there exists $F \in \mathcal{F}$ for which $F(D) \neq F(D')$.

Definition

A **template system** for \mathcal{D} is a collection $\mathcal{T} \subset \mathcal{C}_c(\mathbb{W})$ so that

$$\mathcal{F}_{\mathcal{T}} = \{ \nu_f : f \in \mathcal{T} \}$$

is a coordinate system for \mathcal{D} .

The elements of \mathcal{T} are called **template functions**.

$$\nu_f(D) = \sum_{p \in D} f(p)$$

37 / 45

In theory, it works...

Theorem (Perea, Munch, Khasawneh, 2019)

- Let $\mathcal{T} \subset C_c(\mathbb{W})$ be a template system for \mathcal{D} ,
- ullet $\mathcal{C}\subset\mathcal{D}$ compact, and
- $F: \mathcal{C} \longrightarrow \mathbb{R}$ be continuous.

Then for every $\varepsilon > 0$ there exist

- $N \in \mathbb{N}$,
- a polynomial $p \in \mathbb{R}[x_1, \dots, x_N]$ and
- template functions $f_1, \ldots, f_N \in \mathcal{T}$

so that

$$|p(\nu_{f_1}(D), \nu_{f_2}(D), \cdots, \nu_{f_k}(D)) - F(D)| < \varepsilon$$

for every $D \in C$.

<ロ > ← □ > ← □ > ← □ > ← □ = ・ の へ ○

38 / 45

... what about in practice?

Questions

- What choice of template functions?
- What polynomial?

Unsatisfying answers

- Any collection of functions on W with compact support that separate points should work.
- Machine learning to the rescue!

39 / 45

Tent functions

Parameters

- d: number of subdivisions
- δ : partition scale
- \bullet ε : shift away from the diagonal

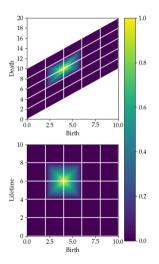
Tent function (i,j) in the birth-lifetime plane

$$i \in 0, \cdots, d; j \in 1, \cdots, d$$

$$ilde{g}_{i,j}(x, ilde{y}) = |1 - rac{1}{\delta} \max \left\{ \left| x - \delta i
ight|, \left| ilde{y} - \left(\delta j + arepsilon
ight)
ight|
ight\} |_{+}$$

Given a persistence diagram $D = (S, \mu)$,

$$G_{i,j}(D) = \sum_{\tilde{\mathbf{x}} \in S} \mu(\tilde{\mathbf{x}}) \cdot \tilde{g}_{i,j}(\tilde{\mathbf{x}})$$



40 / 45

Chebychev polynomials

Parameters

- $A = \{a_1 < a_2 < \cdots < a_n\}$: partition of x-axis
- $\mathcal{B} = \{b_1 < b_2 < \cdots < b_n\}$: partition of y-axis

Interplating polynomial (i, j) in the birth-lifetime plane

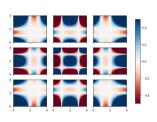
$$f(x,y) = \ell_i^{\mathcal{A}}(x) \cdot \ell_j^{\mathcal{B}}(y)$$

where

$$\ell_j^{\mathcal{A}}(x) = \prod_{i \neq j} \frac{x - a_i}{a_j - a_i} \qquad \ell_j^{\mathcal{B}}(x) = \prod_{i \neq j} \frac{x - b_i}{b_j - b_i}$$

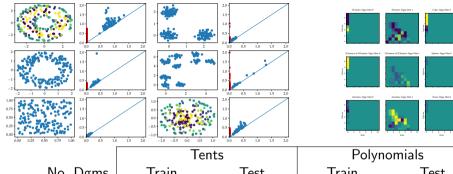
Given a persistence diagram $D = (S, \mu)$,

$$F_{i,j}^{\mathcal{A},\mathcal{B},K,\varepsilon}(D) := \sum_{\tilde{\mathbf{x}} \in \tilde{S}} \mu(\tilde{\mathbf{x}}) \cdot f_{i,j}^{\mathcal{A},\mathcal{B}}(\tilde{\mathbf{x}}) \cdot h_{K,\varepsilon}(\tilde{\mathbf{x}}).$$



41 / 45

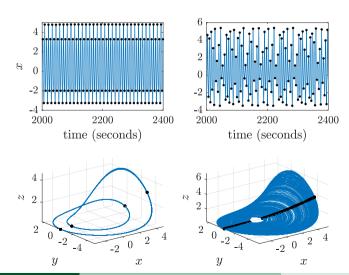
Manifold experiment



	Tents		Polynomials		
No. Dgms	Train	Test	Train	Test	
10	$99.8\% \pm 0.9$	$96.5\% \pm 3.2$	$99.8\% \pm 0.9$	$95.0\% \pm 3.9$	
25	$99.9\% \pm 0.3$	$99.0\%\pm1.0$	$99.7\% \pm 0.5$	$97.6\% \pm 1.5$	
50	$99.9\% \pm 0.2$	$99.9\% \pm 0.3$	$100\%\pm0$	$99.2\% \pm 0.9$	
100	$99.8\% \pm 0.1$	$99.7\% \pm 0.4$	$99.6\% \pm 0.2$	$99.3\% \pm 0.5$	
200	$99.5\% \pm 0.1$	$99.5\% \pm 0.3$	$99.2\% \pm 0.2$	$98.9\% \pm 0.5$	

Rössler

Classification of chaotic vs periodic



Section 5

The point

Liz Munch (MSU-CMSE

The point

- Can either work with persistence diagrams directly, or map somewhere else
- Working with persistence diagrams directly is hard
- Mapping somewhere else means you need to decide on that map.

45 / 45