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Goals for today

Goals for today:
@ Today: ML for Persistence
@ Sorta follows Ch 13.1 but not entirely
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Questions and tasks .
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he Issue
@ Most ML methods want vectors in R".

Tasks @ That implies some sorting or ordering, which we

L don't want for the persistence diagrams.
o Classification _ _
@ Implies the same n for all data points, but we have

a variable number of points in the diagrams.

@ Regression

@ Usually, we need the data points to come from a
vector space, but persistence diagrams don't.
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It's even worse

@ Usually want ML inputs to come
from a Banach space (complete
normed vector space) or a Hilbert
space (vector space with inner
product and limits).

J heokem (Bubenik Wagner 2020)

o @

does not admit an isometric

embedding into a Hilbert space for any
@ Note all Hilbert spaces are Banach 1<p< .

spaces, but not all Banach spaces are

Hilbert spaces.
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Featurization: the idea

Here be dragons.....
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Featurization: the idea

Here be dragons.....
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— > Pers

e Not Cat(0), so no unique geodesics

B O e B @ No unique means

@ No inner product
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Featurization: the idea
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Turning persistence diagrams into something else

@ Algebraic structures CoASson  Cosrdumates

© Landscapes
© Persistence Images

@ Tent Functions

© The point
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Section 1

Algebraic structures
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What if we just forget about the diagram?

@ Just treat a persistence diagram as a set of points in R?

{(leyl)a to 7(Xn7yn)} ~ (Xlay17X27y27 to

@ Problems:
» Order shouldn’t matter

» nisn't fixed
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Algebraic geometry to the rescue!
Qs

@ Associate persistence diagrams to\k[xl,yl, X0, Y2, ]}/ ~ 4. 3%, - 2—*7_\[.:'-\-\'&0

W— \ mMLS o(\glo\L&
"?"‘3\‘\ Mease- Y

. . H f
@ Come up with functions on the points that don't care about order —\Z
1 g publishers of scholarly mathematical
I International Press i i
Home CONTENTS ONLINE
Journals HHA Home Page HHA Content Home All HHA Volumes
This Volume This Issue
Journal Lo
Content Homology, Homotopy and Applications
Online Volume 18 (2016)
Books Number 1
Information e ring of algebraic functions on persistence bar codes
& Ordering Pages: 381 - 402
DOL: hitp://dx.doiorg/10.4310/HHA2016.18.n1.821
Company
Contacts Authors
Aaron Adcock (Facebook, Inc., New York, N.Y., US.A.)
Erik Carlsson (Center of Mathematical Sciences and Applications, Harvard University, Cambridge,
Join Our
Malling Lists (] Massachusetts, U.S.A.)
n , Gunnar Carlsson (Department of Mathematics, Stanford University, Stanford, California, U.S.A.)
Abstract
Percictent hamalaav ic a ranidlv develaning field in the etidv of nuimeranc kinde af data cote Tt
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Example

Jubmects
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Mhnist Data
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Build complex:

@ Put vertex at each white pixel

@ Connect vertices if their pixels touch.

@ My assumption: clique complex after that
Filtration:

@ Pick cardinal direction

@ Add vertices in order in that direction

@ Gives 4 each 0- and 1-dimensional
diagrams
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Results - Loops

Digit 0 Up Sweep: Dimension 1

Digit 2 Up Sweep: Dimension 1

Digit 6 Up Sweep: Dimension 1

Digit 8 Up Sweep: Dimension 1

Digit 9 Up Sweep: Dimension 1
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Results - Non-loops

Digit 1 Right Sweep: Dimension 0

ERERNEERRRE ===

Digit 3 Right Sweep: Dimension 0

=—

Digit 4 Right Sweep: Dimension 0

Digit 5 Right Sweep: Dimension 0

Digit 7 Right Sweep: Dimension 0

N LW —

L Munch (MsUcvsE) T TS G i, 2B Y



Features - Digits example

For each digit
Diagrams:
@ 4 directions

@ 0- and 1-dimensional diagrams
for each direction

@ = 8 diagrams each

Features:
@ Each Diagram has 4 features

@ — 32 features total

e——
—
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Features

Ymax = max death for all diagrams
Diagrams X = {(x;, yi)}

o > xi(yi — xi)
° Z(Ymax )(yl _Xi)
i ZX (vi —xi)*

© > (Ymax — ¥i)2(vi — xi)*

3
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Support Vector Machine (SVM)

A
X2 H1 H
3
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Results

Table 1: Classification Accuracy of two SVM Kernels E

a) Stylistic Problems

SVM 1000 Digits | 5000 Digits | 10000 Digits ‘
Gaussian 87.70% 91.54% 92.04% b
Polynomial 88.00% 91.62% 92.10%

(b) Spurious Topological Changes

Figure 5: Common Misclassifications
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Pros & Cons

Pros

@ Incredibly simple to explain Cons

@ Not stable with respect to

@ Works well in lots of simple cases )
distances

@ Fast to compute
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Section 2

Landscapes
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Paper

Journal of Machine Learning Research 16 (2015) Submitted 7/14; Published 1/15

Statistical Topological Data Analysis using Persistence

Landscapes
Peter Bubenik AlL.COM
Department of Mathematics
Cleveland State University
Cleveland, OH 4§4115-2214, USA
Editor: David Dunson
Abstract

We define a new topological summary for data that we call the per

tence landscape. Since
this summary lies in a vector spac

. it is easy to combine with tools from statis! and
machine learning. in contrast to the standard topological summaries. Viewed as a random
variable with walues in a Banach space, this summary obeys a strong law of large numbers
and a central limit theorem. We show how a number of standard statistical te:

wo that this

nead for eatich
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Definition by picture

@ Take diagram

@ Rank function:
B30 = dim(Im (H(Xa) = Hi(X5b)))
e Rotate (x,y) — (%, %)
o A:NxR =R, (kt) = Ae(t)
o M\ (t) =sup(m>0|pt=mm > k)

death
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Everyone's favorite example

10 104
8 a 8
o ¢
6 L n 6
¢ o A1
4 a 4 )
7 N
2 2 S N
/ \
. N
, \
.
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12
10 104
8 8
6 6
o o, A
4 N “ 4 N,
SN SN
2 N 2 .
/ N / N
/ N / N
, N / \
- > - >
0 2 4 6 8 10 12 14 16 0 2 4 6 & 10 12 14 16

L Munch (MsUcvsE) T TS G i, 2B L



200 points, repeated 100 times

LotARere
i > s
s, 4 @ Top two are example landscapes
l'(. 4 )
iy Y @ Bottom is average over all landscapes
& X2
' :’;-;‘.!.-.u %
oo
See ’.‘
'.:t.._ ¥4

: o e .
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Torus and Sphere

Average landscapes:
@ Row 1: torus; Row 2: Sphere

@ Col: 0-, 1-, and 2-dimensional
diagram
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Stability

D,
Define X
D, ~>

o) 1/p
IXPllp = <Z H/\EH5>
k=1

O,
I~ pN
* N VAV
Then

IAPY — APl < dg (D1, D2).
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Pros & Cons

Pros
@ Can take averages, do ML etc Cons
@ Probably the #1 used ML @ Average might not be something
featurization approach that comes from a diagram
o Stability
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Section 3

Persistence Images
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Images paper
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Their view on the problem

Problem Statement: How can we represent a persistence diagram so that
@ the output of the representation is a vector in R" ,

the representation is stable with respect to input noise,

the representation is efficient to compute,

°
°
@ the representation maintains an interpretable connection to the original PD, and
°

the representation allows one to adjust the relative importance of points in different
regions of the PD?
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Setup

data

persistence

diagram B
.. -:. . .
< . -.'o
8 '-&3 (]
T 5
birth

e Transform: T(X) = {(x,y —x) | (x,y) € X}
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Persistence surface

diagram T(B)

surface

data diagram B
. ":‘.
z . - b
© . o'
birth
e Weight function e.g., f(u) = u,/maxPers

e Gaussian: p,(z) =
ﬁ exp(—[(x — ux)? +

(v — uy)?]/(20%))
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persistence

For a Pers Dgm X, the persistence
surface is

RZ
X =

mx - —

> f(usou

ueT(X)
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Persistence Images

data— diagram B————  diagram T(B) surface image
. "‘ 3 Ir
= o . 4 c
4 % -
© S »
5 .
e v Wt
SR
- = & [ B
birth
@ Grid up box
o Integrate the function in each box
@ Treat the outputs as a vector
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Example: linked twist map

Figure 4: Examples of the first 1000 iterations, {(z,,4,) : n =0,...,1000}, of the linked
twist map with parameter values r = 2, 3.5, 4.0, 4.1 and 4.3, respectively.

] 3 7 [TTT

Figure 5: Truncated orbits, {(.’l‘,“ Yn) tn=0,... .1[)00}‘ of the linked twist map with fixed
r = 4.3 for different initial conditions (zg, o).
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@ Generate point clouds from a

discrete dynamical system

Xpt1 = Xn + ryn(l —yn) mod 1
Yn+1 = Yn+ Xn(l — x,) mod 1

o Goal: Classify trials by r
@ Scores

» Both Hy and H;: 82.5%
> Ho: 498%
> Hll 657%
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Stability

Theorem 13.3. Suppose persistence images are computed with the normalized Gaussian distri-
bution with variance o> and weight function w : R> — R. Then the persistence images are stable
w.r.t. the 1-Wasserstein distance between persistence diagrams. More precisely, given two finite
and bounded persistence diagrams D and E, we have:

10 |l
I = Telly < (V3IVel + | —=—=) - dw1 (D, E).
n o

Here, Vw stands for the gradient of w, and |Vw| = supcg2 [|Vwl|2 is the maximum norm of the
gradient vector of w at any point in R2. The same upper bound holds for || 1p—1g| and || Ip—1£||

as well.
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Section 4

Tent Functions

Lec 14 Thurs, Oct 16, 2025 34 /45



Paper
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Template functions

Step 2: Evaluate each
function f at each point in
each diagram: f(p) for

Step 1: Choose collection of
functions: {f;}

o fi:f - R pcD Step 3: For fixed diagram D

o compact support — and function f, sum up for
. . all points in diagram:

\ i S v1(0) = pep F(p)

Result: {fY, ~ D (v4(D), v (D), -+ ,vs (D))
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Template function definition

@ D: Space of persistence diagrams
o C.(W): functions from W =7 to R with compact support

Definition

A coordinate system for D is a collection F C C(D,R) which separates points.
D # D' € D, then there exists F € F for which F(D) # F(D").

Definition
A template system for D is a collection 7 C C.(W) so that

Fr={ve:feT}

is a coordinate system for D.
The elements of 7 are called template functions.
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ve(D) = f(p)

peD
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In theory, it works...

Theorem (Perea, Munch, Khasawneh, 2019)
o Let T C C(W) be a template system for D,
e C C D compact, and
o F:C — R be continuous.

Then for every € > 0 there exist

o NeN,

@ a polynomial p € R[xy, ..., xy] and

e template functions fy,...,fy €T
so that

[p(v4 (D), v (D), - ,vg (D)) — F(D)| <e
for every D € C.
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. what about in practice?

Questions

@ What choice of template
functions?

@ What polynomial?

Liz Munch (MSU-CMSE)

Unsatisfying answers

@ Any collection of functions on W with
compact support that separate points
should work.

@ Machine learning to the rescue!
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Tent functions

Parameters
@ d: number of subdivisions

@ J: partition scale
@ ¢: shift away from the diagonal
Tent function (/,) in the birth-lifetime plane
i€0,---,d;jel,---.d
gij(x.7) = |1 = max {|x = dil [y — (] + )|} |+
Given a persistence diagram D = (S, p),

= u(X) - & (%

xeSs

Lec 14

Liz Munch (MSU-CMSE)

eath

Lifetime

Thurs, Oct 16, 2025

40/45



Chebychev polynomials

Parameters

o A={a; <ay<--- < ap}: partition of x-axis

@ B={by < by <---< by}: partition of y-axis
Interplating polynomial (/) in the birth-lifetime plane

F(x,y) =41 (x) - 67 (v)

4
where E]
feo-T12=2  d0-T5— nil

i i b

i]ﬂ[i
Riinii g

Given a persistence diagram D = (S, u),

FiyP (D) Zu ) £75(%) - i ().



Manifold experiment

S > HEEE
Tt | o o e ‘ s
Polynomials
No. Dgms Train Test Train Test
10 | 99.8% +0.9 96.5% +3.2 | 99.8% +£0.9 95.0% £ 3.9
25199.9% +0.3 99.0% +1.0 | 99.7% +0.5 97.6% + 1.5
50 | 99.9% +0.2 99.9% +0.3 | 100%+0 99.2% +0.9
100 | 99.8% +0.1 99.7% 4+ 0.4 | 99.6% + 0.2 99.3% + 0.5
200 | 99.5% +0.1 99.5% +0.3 | 99.2% + 0.2 98.9% + 0.5
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Rossler
Classification of chaotic vs periodic
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Section 5

The point
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The point

@ Can either work with persistence diagrams directly, or map somewhere else
@ Working with persistence diagrams directly is hard

@ Mapping somewhere else means you need to decide on that map.
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