Persistence

Lecture 9 - CMSE 890

Prof. Elizabeth Munch

Michigan State University

Dept of Computational Mathematics, Science & Engineering

Tues, Sep 30, 2025

z Munch (MSU-CMSE) Lec 13 Tues, Sep 30, 2025 1/29

Goals

Goals for today:

Persistent homology

Need to do HW:

- Eugene
- Edem
- Jannik

Section 1

Last time

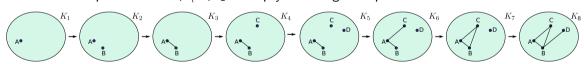
Last time: Simplicial Complex Filtration

Definition

A filtration $\mathcal{F} = \mathcal{F}(K)$ of a simplicial complex K is a nested sequence of its subcomplexes

$$\mathcal{F}: \emptyset = K_0 \subseteq K_1 \subseteq K_2 \subseteq \cdots \subseteq K_n = K.$$

 \mathcal{F} is called *simplex-wise* if $K_i \setminus K_{i-1}$ is empty or a single simplex.



Betti curve

The p-th Betti curve is a function

$$eta_{
ho}(\mathcal{F}): \mathbf{Z}
ightarrow \mathbb{Z} \ i \mapsto eta_{
ho}(K_i) = \operatorname{rk}(H_{
ho}(K_i))$$

Induced map

Given a simplicial map $f: K \to L$, the induced map on homology is defined by

by

$$f_*: H_p(K) \rightarrow H_p(L)$$

 $[\alpha] \mapsto [f_\#(\alpha)]$

Section 2

Persistence

Persistence module

Given a filtration \mathcal{F} , the p-dimensional persistence module is

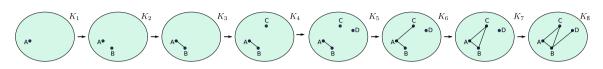
$$H_p(\mathcal{F}): 0 = H_p(K_0) \to H_p(K_1) \to H_p(K_2) \cdots \to H_p(K_n) = H_p(K)$$

with maps $h_p^{i,j}: H_p(K_i) \to H_p(K_j)$ induced by inclusion.

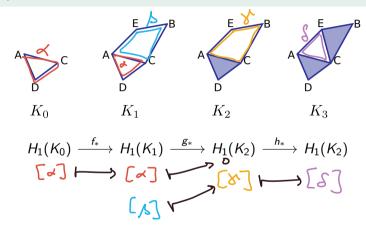
8/29

Liz Munch (MSU-CMSE) Lec 13 Tues, Sep 30, 2025

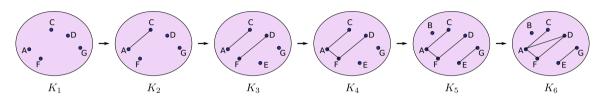
What's going on algebraically?



Another example



Tryit: Figure out where the generators go



$$H_{0}(K_{1}) \longrightarrow H_{0}(K_{2}) \longrightarrow H_{0}(K_{3}) \longrightarrow H_{0}(K_{4}) \longrightarrow H_{0}(K_{5}) \longrightarrow H_{0}(K_{6})$$

$$[A] \longmapsto [A] \longmapsto [A] \longmapsto [A] \longmapsto [A]$$

$$[CO] \longmapsto [CO] \mapsto [CO] \mapsto$$

Tues, Sep 30, 2025

The pth persistent homology groups

$$H_p(K_0) \to H_p(K_1) \to H_p(K_2) \to \cdots \to H_p(K_i) \to \cdots \to H_p(K_j) \to \cdots \to H_p(K_n)$$

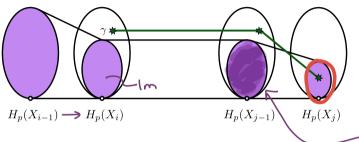
The pth persistent homology groups are the images induced by inclusion:

$$H_p^{i,j} = \operatorname{Im}(H_p(K_i) \to H_p(K_j)).$$

The pth persistent Betti numbers are the ranks

$$\beta_{p}^{i,j} = \operatorname{rank} H_{p}^{i,j}$$

Birth and Death



Birth [~]

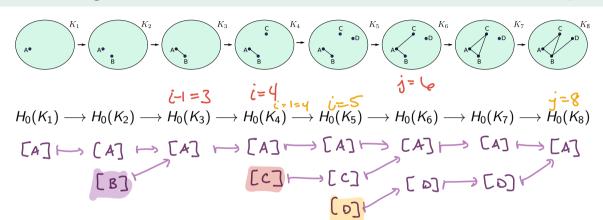
A class $\gamma \in H_p(K_i)$ is born at K_i if it is not in $H_p^{i-1,i}$

Death

That class γ dies entering K_j if merges with an older class.^a Specifically, if $h_p^{i,j-1}(\gamma) \not\in H_p^{i-1,j-1}$ but $h_p^{i,j}(\gamma) \in H_p^{i-1,j}$.

^aWarning: The book's definition is different

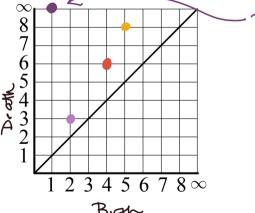
When are generators born and die?



Tues, Sep 30, 2025

Elder rule and persistence diagram

When two classes merge, the younger is the one that "dies."



Born at I lives forever New dies, lives forever infinite class

4 D > 4 B > 4 B > 3 B 9 9 P

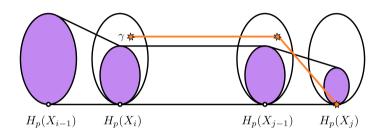
Section 3

Dey Wang version of persistence classes

16 / 29

Liz Munch (MSU-CMSE) Lec 13 Tues, Sep 30, 2025

Birth and Death: Book version



Birth

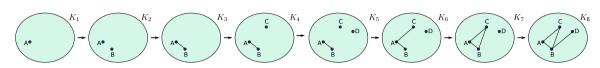
A class $\gamma \in H_p(K_i)$ is born at K_i if it is not in $H_p^{i-1,i}$

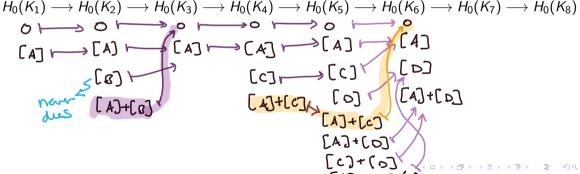
Death

A class γ dies entering K_j if $\gamma \in H_p(X_{j-1})$ is not trivial, but $H_p^{j-1,j}(\gamma) = 0$.

^aWarning: In this version, not all classes die!

Lets check where (lots of but maybe not all) elements go





18 / 29

Choosing a different basis

$$H_{0}(K_{1}) \longrightarrow H_{0}(K_{2}) \longrightarrow H_{0}(K_{3}) \longrightarrow H_{0}(K_{4}) \longrightarrow H_{0}(K_{5}) \longrightarrow H_{0}(K_{6}) \longrightarrow H_{0}(K_{7}) \longrightarrow H_{0}(K_{8})$$

$$[A] \qquad [A] \qquad [A]$$

Book definition: which birth time pairs to the death time?

B waps to 0

Let [c] be a p-th homology class that dies entering X_i . Then, it is born at X_i if and only if there exists a sequence

$$i_1 \leq i_2 \leq \cdots \leq i_k = i$$

for some k > 1 so that

- There is a c_{i_ℓ} where $[c_{i_\ell}]$ is born at X_{i_ℓ} for every $\ell \in \{1, \cdots, k\}$. $[x] = h_p^{i_1, j-1}([c_{i_1}]) + \cdots + h_p^{i_k, j-1}([c_{i_{\iota}}])$
- $i_k = i$ is the smallest possible value among any sequences have the above two properties.

Counting classes

$$0 \to H_p(K_1) \to H_p(K_2) \to H_p(K_3) \to \cdots \to H_p(K_n) \to 0$$

- Attach 0 vector space at the end
- Associate n+1 to $a_{n+1}=\infty$
- $\beta_p^{i,j} = \text{rank} H_p^{i,j} = \text{rank}(\text{Im}(H_p(K_i) \to H_p(K_j)))$ counts classes born at or before i and dying after j

Same example again

$$H_0(K_1) \longrightarrow H_0(K_2) \longrightarrow H_0(K_3) \longrightarrow H_0(K_4) \longrightarrow H_0(K_5) \longrightarrow H_0(K_6) \longrightarrow H_0(K_7) \longrightarrow H_0(K_8)$$

$$[A] \longmapsto [A] \longmapsto [A]$$

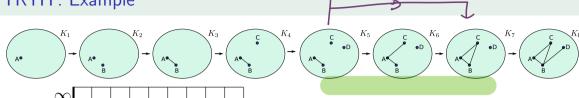
$$[A+B] \longmapsto 0 \qquad [A+C] \mapsto [A+C] \longmapsto 0$$

$$[A+D] \mapsto [A+D] \mapsto [A+D] \longmapsto 0$$

◆□▶ ◆□▶ ◆臺▶ ◆臺▶ · 臺 · かなで

Tues, Sep 30, 2025

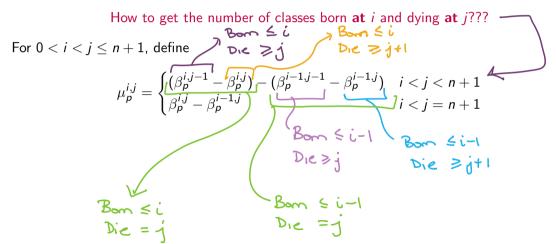
TRYIT: Example



∞									
8 7	1	1	1	1	1	1			
	7	2	1	1	2	2			
6	2	1	1	1	2	2			
5	1	1	2	2	3	X			
4	1	2	1	2	X	×			
4 3 2	1	1	1	X	X	X			
2	1	2	\times	X	X	×			
1	1	X	X	X	X	X			
	1	2	3	4	5	6	7	8	∞

Determine $\beta_0^{i,j}$ for all pairs $i \leq j$ for this example

Persistence pairing function



Tues, Sep 30, 2025

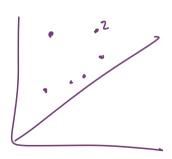
-> The lefetime

Persistence of a class

For $\mu_p^{i,j} \neq 0$, the persistence Pers([c]) of a class [c] that is born at X_i and dies at X_j is defined as $Pers([c]) = a_j - a_i$. When j = n + 1 with $a_{n+1} = \infty$, $Pers([c]) = \infty$.

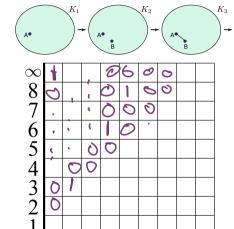
Persistence diagram

The persistence diagram $Dgm_p(\mathcal{F})$ (also written $Dgm_p(f)$) of a filtration induced by a function f is obtained by drawing a point (a_i, a_j) with non-zero multiplicity $\mu_p^{i,j}$ (i < j), on the extended plane where the points on the diagonal $\Delta = \{(x, x) \in \mathbb{R}^2\}$ are added with infinite multiplicity.

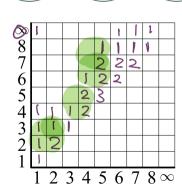


multiple things Can be born and die @ same true

TRYIT: Example



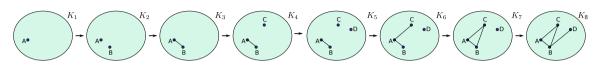
 2345678∞

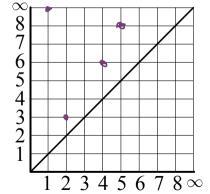


ij for this example

$$(1,j-1) - \beta_p^{i-1,j}$$
 $i < j < n+1$ $i < j = n+1$

TRYIT: Persistence diagram for this example



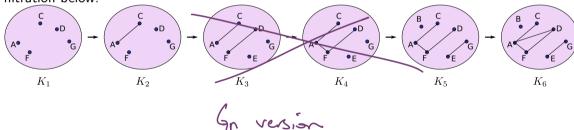


Plot the 0-dimensional persistence diagram

Liz Munch (MSU-CMSE) Lec 13 Tues, Sep 30, 2025 28 / 29

Homework

Determine the $\beta_0^{i,j}$ table, the $\mu_0^{i,j}$ table, and the 0-dimensional persistence diagram for the filtration below.



29 / 29

Liz Munch (MSU-CMSE) Lec 13 Tues, Sep 30, 2025