Introduction & Topology Basics Lecture 1 - CMSE 890

Prof. Elizabeth Munch

Michigan State University

Dept of Computational Mathematics, Science & Engineering

Tues, Aug 26, 2025

Syllabus

- Available on the course website: elizabethmunch.com/cmse890
- Schedule & Office hours
- Slack
- Prerequisites:
 - Linear Algebra
 - Some programming experience
- Python, jupyterhub, and engineering DECS accounts
- Homework
 - Present a problem assigned in the previous class
 - Approximately twice during the semester
 - Goal: Present on something not in your expertise

→ C O A https://www.cs.purdue.edu/homes/tamaldey/book/CTDAbook/CTDAbook.html

3 / 34

Book: Computational Topology for Data Analysis (To be published by Cambridge University Press)

Tamal K Dey

Department of Computer Science, Purdue University, IN

Yusu Wang

Halicioglu Data Science Institute, UC San Diego, CA

Copyright: Tamal Dey and Yusu Wang 2016-2021

Get an electronic copy

This material has been / will be published by Cambridge University Press as Computational Topology for Data Analysis by Tamal Dey and Yusu Wang. This prepublication version is free to view and download for personal use only. Not for redistribution, re-sale, or use in derivative works. Computational topology has played a synergistic role in bringing together research work from computational geometry, algebraic topology, data analysis, and many other related scientific areas. In recent years, the field has undergone an explosive growth in the area of data analysis. The application of topological techniques to traditional data analysis, which has earlier developed mostly on a statistical setting, has opened up new opportunities. This book is intended to cover this aspect of computational topology along with the developments of generic techniques for various topology-centered problems. Since the depoinment of persistent homology, the area has grown both in its methodology and applicability. One consequence of this growth has been the development of various algorithms which intertwine with the discoveries of various mathematical structures in the context of processing data. The purpose of this book is to capture these algorithms that he associated mathematical

. Contente

Chapter 1: Basic Topology

- a. Topological spaces, metric space topology
- b. Maps: homeomorphisms, homotopy equivalence, isotopy
- c. Manifolds
- d. Functions on smooth manifolds
- e. Notes and Exercises
- a. Simplicial complexes
- b. Nerves, Cech and Vietoris-Rips complexes
 c. Sparse complexes (Delaunay, Alpha, Witness)
- d. Graph induced complexes
- e. Notes and Exercises

Chapter 2 (ii). Homology

Chapter 2 (i) . Complexes

- a. Chains, cycles, boundaries, homology groups, Betti numbers
- b. Induced maps among homology groups
- d. Singular homology groups
- e. Cohomology groups

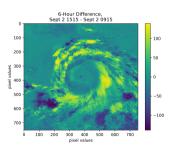
Introductions

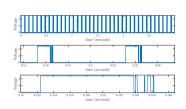
- Name
- Department/Program
- Research interest
- Non-work interest

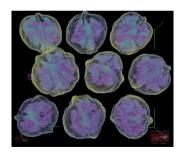
Section 1

Topological Data Analysis

Shape in data

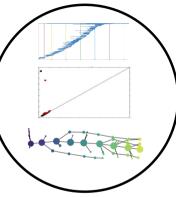


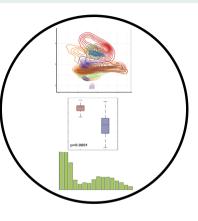




Images: Wikipedia, Szymczak et al., Ma et al.

Topological Data Analysis (TDA)





Raw Data X-ray CT Point Clouds Networks

Topological SummaryPersistence Diagrams
Euler Characteristic Curves
Mapper graphs

Analysis
Statistics
Machine Learning

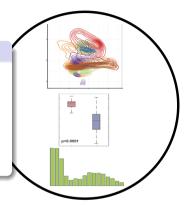
7/34

Munch (MSU-CMSE) Lec 1 Tues, Aug 26, 2025

Topological Data Analysis (TDA)

Main goal of TDA

Provide
quantifiable,
comparable,
robust,
consise
summaries of the shape of data.



Raw Data

X-ray CT Point Clouds Networks

Topological Summary

Persistence Diagrams Euler Characteristic Curves Mapper graphs Analysis
Statistics
Machine Learning

7/34

unch (MSU-CMSE) Lec 1 Tues, Aug 26, 2025

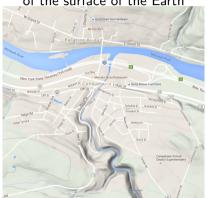
What is topology?

Topology \neq **Topography**

Mathematical study of spaces preserved under continuous deformations

- stretching and bending
- not tearing or gluing

Study of the shape and features of the surface of the Earth



Images: Wikipedia

Liz Munch (MSU-CMSE) Lec 1 Tues, Aug 26, 2025 8/34

History Pt 2

- Esoteric field of study 1700-2000
 - ► Algebraic topology
 - Applications/intersections with dynamical systems
 - ▶ Would never be considered "applied" in traditional sense.

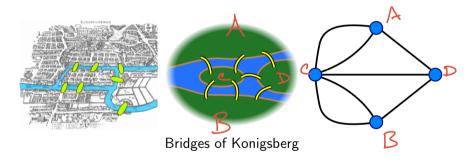
Topology, the pinnacle of human thought.

In four centuries it may be useful.

- Alexander Solzhenitzin, "The First Circle" 1968
- Things change ca.2000
 - Introduction of Persistent Homology

History

Leonhard Euler (1707-1783)



Topological Invariants- Euler Characteristic

Name	Image	Vertices V	Edges	Faces	Euler characteristic: V - E + F
Tetrahedron		4	6	4	2
Hexahedron or cube		8	12	6	2
Octahedron		6	12	8	2
Dodecahedron		20	30	12	2
Icosahedron		12	30	20	2

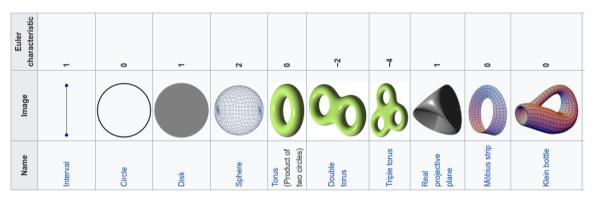
Name	Image	Vertices V	Edges	Faces	Euler characteristic: V - E + F
Tetrahemihexahedron		6	12	7	1
Octahemioctahedron		12	24	12	0
Cubohemioctahedron		12	24	10	-2
Great icosahedron		12	30	20	2

 ${\sf Vertices}-{\sf Edges}+{\sf Faces}={\sf Euler}\ {\sf Characteristic}$

Images: Wikipedia

Liz Munch (MSU-CMSE) Lec 1 Tues, Aug 26, 2025 11/34

Euler characteristic as topological signature

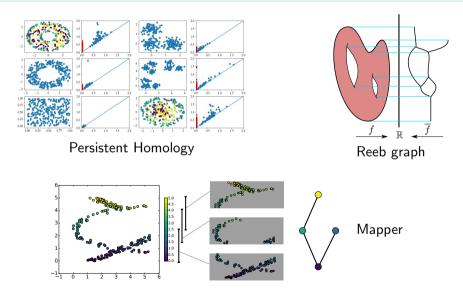


Different Euler characteristics mean spaces must be topologically **different**

Different spaces might have the **same**Euler characteristics

Euler characteristic is an example of a topological signature

Quantification vs Representation of Shape



Current active research directions

- Multidimensional persistence
- Machine learning, statistics
- Time series analysis and dynamical systems
- Metrics
- Parallelization
- Visualization

- Application areas:
 - Neuroscience
 - Plant Biology
 - Gene expression
 - Image processing
 - Sensor networks
 - Atmospheric science

Goals for this course

- Understand the computation and interpretation of several commonly used tools in TDA
 - Persistent Homology
 - Reeb graphs
 - Mapper
- Know what types of data and/or are amenable to TDA methods.
- Have experience working with open-source code banks for computation.

Section 2

Intro to Topology Vocabulary

Goals of this section

- Cover some basic terms from Ch 1.1, 1.2, 1.3
- Depending on your math background, this might be obvious or this might seem impossible. If the latter, spend some time tonight trying some examples! Oh yeah, and read the textbook!

Topology

Definition

A topological space is a point set \mathbb{T} with a set of subsets T (called open sets) such that

- \emptyset , $\mathbb{T} \in T$ For every $0 \subseteq T$, the union of the sets in U is in T
- For every finite $U \subseteq T$, the common intersection of the subsets in U is in T.

Ex. $\mathbb{T} = \{a, b, c\}, T = \{\emptyset, T_1 = \{a\}, T_2 = \{b\}, T_3 = \{a, b\}, \mathbb{T} = \{a, b, c\}\}$

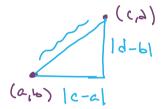
Metric - L_2

Definition

A metric space is a pair (\mathbb{T}, d) where \mathbb{T} is a set, and $d: \mathbb{T} \times \mathbb{T} \to \mathbb{R}$ satisfies

- d(p,q) = 0 iff p = q
- d(p,q) = d(q,p) for all $p,q \in \mathbb{T}$
- $d(p,q) \le d(p,r) + d(r,q)$ for all $p,q,r \in \mathbb{T}$

Example:
$$\mathbb{T}=\mathbb{R}^2$$
, $d((a,b),(c,d))=\sqrt{(c-a)^2+(b-d)^2}$

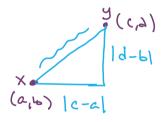


Definition

A metric space is a pair (\mathbb{T}, d) where \mathbb{T} is a set, and $d : \mathbb{T} \times \mathbb{T} \to \mathbb{R}$ satisfies

- d(p, q) = 0 iff p = q
- d(p,q) = d(q,p) for all $p,q \in \mathbb{T}$
- $d(p,q) \le d(p,r) + d(r,q)$ for all $p,q,r \in \mathbb{T}$

 $\begin{array}{l} \mathsf{Example:} \ \mathbb{T} = \mathbb{R}^2, \\ d((a,b),(c,d)) = \mathsf{max}\{|u_1-v_1|,|u_2-v_2|\} \end{array}$



Metric Topology

Definition

Given a metric space (\mathbb{T}, d) , an open metric ball is

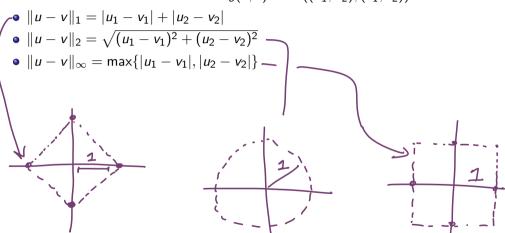
$$B_o(c,r) = \{p \in \mathbb{T} \mid d(p,c) < r\}.$$

The metric topology is the set of all metric balls

$$\{B_o(c,r) \mid c \in \mathbb{T}, 0 < r \leq \infty\}.$$

TRY IT:

Draw the subset of \mathbb{R}^2 contained in $B_o(0,1)$ for $d((u_1,u_2),(v_1,v_2))=$

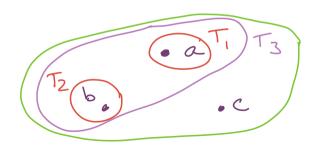


Open and closed sets

Definition

A set is open if it is in the topology T. A set is closed if its complement is open.

Ex 1.
$$\mathbb{T} = \{a, b, c\}, T = \{\emptyset, T_1 = \{a\}, T_2 = \{b\}, T_3 = \{a, b\}, \mathbb{T} = \{a, b, c\}\}$$



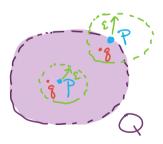
Open and closed sets - metric space version

Limit points

FR2

Definition

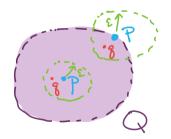
Let $Q \subset \mathbb{T}$ be a point set. A point $p \in \mathbb{T}$ is a *limit point* of Q if for every $\varepsilon > 0$, Q contains a point $q \neq p$ with $d(p,q) < \varepsilon$.

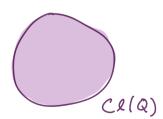


Open and closed sets - metric space version

Definition

- Cl(Q): The closure of a point set $Q \subseteq \mathbb{T}$ is the set containing every point in Q and every limit point of Q.
- A point set Q is closed if Q = Cl(Q), i.e. Q contains all its limit points.

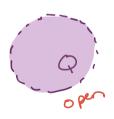


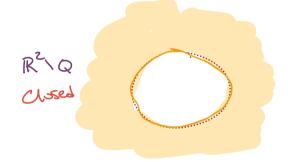


Complement version

Definition

- The complement of a point set Q is $\mathcal{T} \setminus Q$.
- A point set Q is open if its complement is closed, i.e. $T \setminus Q = Cl(T \setminus Q)$.





Definition

An open (closed) cover of a topological space (\mathbb{T}, T) is a collection C of open (closed) sets so that $\mathcal{T} \subseteq \bigcup_{U \in C}$.

Ex.
$$\mathbb{R}$$
, $C = \{(n-1, n+1) \mid n \in \mathbb{Z}\}$



Connected

Definition Point in both

A topological space (\mathbb{T}, T) is disconnected if there are two disjoint non-empty open sets $U, V \in T$ so that $T = U \cup V$. A topological space is connected if its not disconnected.

Ex.
$$A = (1,2) \cup (5,7) \subset \mathbb{R}$$

Section 3

Maps

Maps

Definition

A function $f: T \to U$ is continuous if for every open set $Q \subseteq U$, $f^{-1}(Q)$ is open. Continuous functions are also called maps.

Ex1.
$$f : \mathbb{R} \to \mathbb{R}$$
, $f(x) = x^2$

$$\chi \mapsto \chi^2$$

$$f = \{ \text{teT} \mid f(t) \}$$

$$f = \{ \text{teT} \mid f(t) \}$$

$$f = \{ \text{teT} \mid f(t) \}$$

Liz Munch (MSU-CMSE) Lec 1 Tues, Aug 26, 2025

Embedding

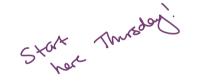
Definition

A map $g: T \to U$ is an embedding of T into U if g is injective.

Injective (1-1): f(x) = f(y) iff x = y

Ex1.
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = x^3$

Ex2.
$$g: \mathbb{S}^1 \to \mathbb{R}^2$$



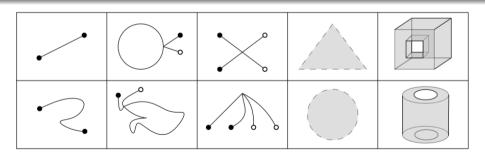
Homeomorphism

Definition

Let T and U be topological spaces.

A homeomorphism is a bijective map $h: T \to U$ whose inverse is also continuous.

Two topological spaces are homeomorphic if there exists a homeomorphism between them.



Homeomorphism: Cheap trick

Proposition

If T and U are compact metric spaces, every bijective map from T to U has a continuous inverse.

Homework for next time

Need a volunteer! For this homework, it can't be someone who is a Math PhD student, preferably someone who hasn't taken a topology class.

Choose two of the following to present.

- DW 1.6.1. Be sure to explain *why* the constructions you have created are/are not Hausdorff.
- 2 DW 1.6.2
- **3** DW 1.6.3
- **1.6.4 DW 1.6.4**
- **O** DW 1.6.5
- **o** DW 1.6.6