Here Comes the Homology

Lecture 5 - CMSE 890

Prof. Elizabeth Munch

Michigan State University

Dept of Computational Mathematics, Science & Engineering

Tues, Sep 9, 2025

Goals

Goals for today:

• Ch 2.4: Cycles and Boundaries

Section 1

Linear Algebra Review & Homology

Definition

A field $(k, +, \cdot)$ is a set k with two operations + and \cdot such that for any $a, b, c \in k$:

- Closure:
- Commutativity:
 - •
 - **>**
- Associativity:

 - •
- Identity:

- Inverses:
 - -
- Distributivity:

Examples:

Vector space

Definition

A vector space over a field k is a set V with vector addition and scalar multiplication such that

- Associative +:
- Commutative +:
- Identity
 - +
- Inverses:

+

- Scalar vs. field mult:
- Distributivity:

Examples:

Basis

Definition

A basis for a vector space V is a collection of vectors $\{b_{\alpha}\}_{{\alpha}\in A}$ such that

- they are linearly independent and,
- they span V.

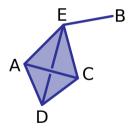
Goal

Build a vector space from a simplicial complex!

p-Chains

Let K be a simplicial complex and fix a dimension p. A p-chain is a finite formal sum of p-simplices in K, written

$$\alpha = \sum a_i \sigma_i$$



Addition of chains

p-chains are added component-wise: if $\alpha = \sum a_i \sigma_i$ and $\beta = \sum b_i \sigma_i$, then

$$\alpha + \beta =$$

Chain group

The collection of p-chains with addition is called the p^{th} -chain group (vector space), $C_p(K)$.

Some checks

- Associative +:
- Commutative +:
- Zero element
- Inverses:

Linear Transformations

A linear transformation between two vector spaces V and W is a map $T:V\to W$ such that the following hold:

- •
- •

Matrix representation:

Boundary maps¹

$$\begin{array}{ccc} \partial_p: & C_p(K) & \to & C_{p-1}(K) \\ \sigma = [v_0, \cdots, v_p] & \mapsto & \sum_{j=0}^p [v_0, \cdots, \widehat{v_j}, \cdots v_p] \end{array}$$

Liz Munch (MSU-CMSE)

Lec 7

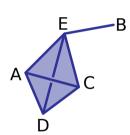
Tues, Sep 9, 2025

¹Warning: We are assuming \mathbb{Z}_2 coefficients from now on!

Checking linearity

$$\partial_{\boldsymbol{p}}(\alpha+\beta) = \partial_{\boldsymbol{p}}(\alpha) + \partial_{\boldsymbol{p}}(\beta); \qquad \qquad \alpha = \sum \mathsf{a}_i \sigma_i, \qquad \beta = \sum \mathsf{b}_i, \sigma_i$$

Homework



•
$$\partial_1([a,e]) =$$

•
$$\partial_1([a,e]+[b,e])=$$

•
$$\partial_1([a,e]+[c,e]+[c,d]+[a,d])=$$

•
$$\partial_2([a,c,e]+[a,c,d])=$$