Nerve, Cech, and Rips Complexes Lecture 4 - CMSE 890

Prof. Elizabeth Munch

Michigan State University

Dept of Computational Mathematics, Science & Engineering

Thurs, Sep 4, 2025

Section 2.2 Goals

Goals for today:

- Complexes from point clouds: Rips & Čech complexes
- Sparse Complexes: Alpha complex

Recall: Geometric vs Abstract Simplicial Complex

- Given a collection of points $V \subseteq \mathbb{R}^N$
- For a subset of these $\{a_0, \ldots, a_n\}$, a (geometric) *n*-simplex is the convex hull of the points.
- A simplicial complex is a collection of geometric n simplices so that
 - Every face of a simplex is also in the complex.
 - The intersection of any two simplices is either empty or a face of both.

- Given a finite set V
- ullet An abstract simplex is a subset of V.
- An abstract simplicial complex is a set K of finite subsets of some V such that if $\sigma \in K$ and $\tau \subseteq \sigma$, then $\tau \in K$.

Section 1

Čech and Rips Complexes

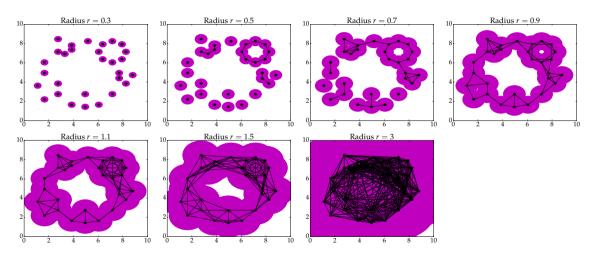
Point cloud

A point cloud is a (finite) collection of points in a metric space (M, d).

$$B_o(x, r) = \{ y \in M \mid d(x, y) < r \}$$

$$B(x,r) = \{ y \in M \mid d(x,y) \le r \}$$

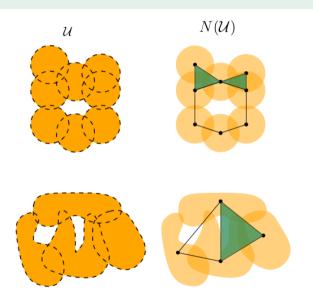
What we want to study



From last time: Nerve

Given a finite collection of sets \mathcal{F} , the **nerve** is

$$\operatorname{Nrv}(\mathcal{U}) = \{ X \subseteq \mathcal{F} \mid \bigcap_{U \in X} U \neq \emptyset \}.$$



From earlier: Homotopy type

Definition

Two topological spaces T and U are homotopy equivalent if there exist maps $g:T\to U$ and $h:U\to T$ such that $h\circ g$ and $g\circ h$ are homotopic to the appropriate identity maps.

- *Intuition*: Can deform one space into the other.
- Example: Divide the alphabet into equivalence classes: collections of letters that are all homotopy equivalent to every other letter in their collection.

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Nerve lemma (Metric space version)

Theorem

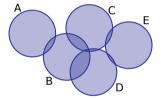
Given a finite cover \mathcal{U} (open or closed) of a metric space M, the underlying space $|N(\mathcal{U})|$ is homotopy equivalent to M if every non-empty intersection $\bigcap_{i=0}^k U_{\alpha_i}$ of cover elements is homotopy equivalent to a point (contractible).

Definition

Let $P \subset (M, d)$ be a finite point cloud. Fix $r \geq 0$. The Čech complex is

$$\check{C}^r(P) = \left\{ \sigma \subseteq P \mid \bigcap_{x \in \sigma} B(x, r) \neq \emptyset \right\} \\
= \text{N}(\{B(x, r)\}_{x \in P})$$

Example: Cech complex



Warning

The Čech complex is an abstract simplicial complex. The obvious map into \mathbb{R}^N doesn't necessarily get you a geometric simplicial complex!

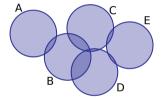
Rips complex

Definition

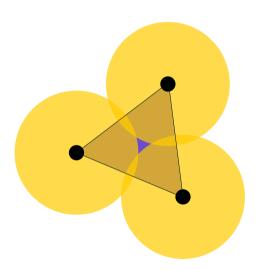
Given $P \subseteq (M, d)$, the Vietoris-Rips complex is

$$VR^r(P) = \{ \sigma \subseteq P \mid d(x_i, x_j) \le 2r \text{ for all } x_i, x_j \in \sigma \}$$

Example: Rips complex



Equilateral triangle example



Rips-Čech Lemma

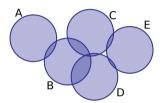
Theorem

Given point cloud $P \subset (M, d)$ and $r \geq 0$,

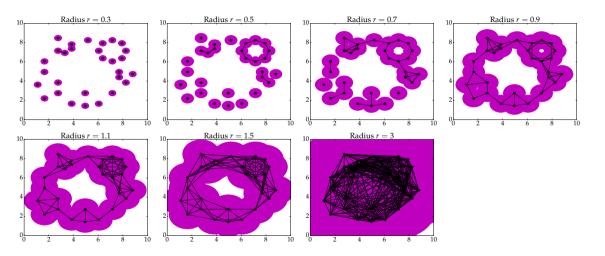
$$\check{C}^r(P) \subseteq VR^r(P) \subseteq \check{C}^{2r}(P)$$

Warning: Radius vs diameter

$$VR^r(P) = \{ \sigma \subseteq P \mid d(x_i, x_j) \le 2r \text{ for all } x_i, x_j \in \sigma \}$$



What we want to study



Section 2

Alpha complex

Voronoi diagram

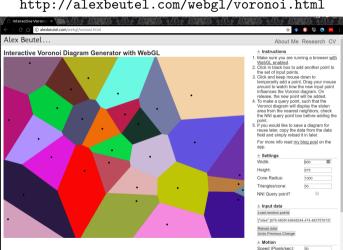
Given a point cloud $P \subseteq \mathbb{R}^N$.

The Voronoi cell of $u \in P$ is

$$V_u = \{ x \in \mathbb{R}^d \mid ||x - u|| \le ||x - v||, v \in P \}$$

The Voronoi diagram is the collection of Voronoi cells $Vor(P) = \{V_u \mid u \in P\}.$

Simple examples



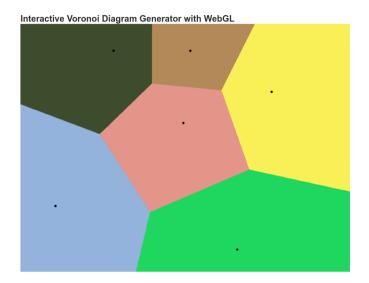
http://alexbeutel.com/webgl/voronoi.html

User defined

Delaunay triangulation

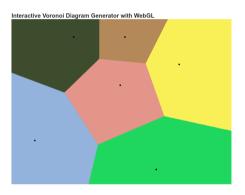
The Delaunay complex of point cloud $P \subseteq \mathbb{R}^N$ is the nerve of the Voronoi diagram.

$$\mathrm{Del}(P) = \{ \sigma \subseteq P \mid \bigcap_{u \in P} V_u \neq \emptyset \}.$$

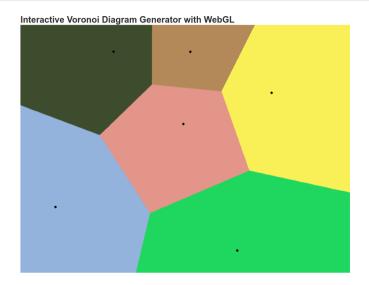


Properties

- Delaunay is an abstract simplicial complex.
- If we have points in general position, the obvious embedding gives a geometric simplicial complex.
- Delaunay is FIXED (has nothing to do with a radius or diameter parameter....)



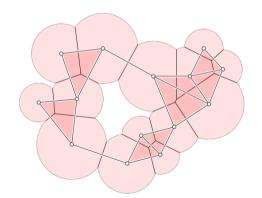
Leading up to the alpha complex



Alpha complex

 $\mathrm{Del}_p^\alpha = \{x \in B(p,\alpha) \mid d(x,p) \leq d(x,q) \text{ for all } q \in P\} = B(p,r) \cap V_p$ The alpha complex for point cloud P with radius $r \geq 0$ is the nerve

$$\mathrm{Del}_{p}^{\alpha}=\mathrm{Nrv}(\{D_{p}^{\alpha}\mid p\in P\}).$$



Properties

- Alpha $(r) \subseteq$ Delaunay
- Alpha $(r) \subseteq \check{C}(r)$
- Alpha(r) has the same homotopy type as the union of balls of radius r.

For next time

• EH III.7 (p75) Let $P \subseteq \mathbb{R}^d$ be a finite set of points in general position. Denote by $\check{C}(r)$ and $\mathrm{Alpha}(r)$ as the Čech and alpha complexes for radius $r \geq 0$, respectively.

Is it true that
$$Alpha(r) = \check{C}(r) \cap Delaunay$$
?

If yes, prove the following two subcomplex relations. If no, give examples to show which subcomplex relations are not valid.

- **1** Alpha(r) ⊆ $\check{C}(r)$ ∩ Delaunay.
- (2) $\check{C}(r) \cap Delaunay \subseteq Alpha(r)$