Directional Transform and the Euler Characteristic Transform Lecture 20 - CMSE 890

Prof. Elizabeth Munch

Michigan State University

Dept of Computational Mathematics, Science & Engineering

Tues, Nov 18, 2025

Plan

- Euler Characteristic Curves and the Euler Characteristic
- Reading: An Invitation to the Euler Characteristic Transform, https://doi.org/10.1080/00029890.2024.2409616

Section 1

Euler Characteristic Curve

Topological Invariants- Euler Characteristic

Name	Image	Vertices V	Edges	Faces	Euler characteristic: V - E + F
Tetrahedron		4	6	4	2
Hexahedron or cube		8	12	6	2
Octahedron		6	12	8	2
Dodecahedron		20	30	12	2
Icosahedron		12	30	20	2

Name	Image	Vertices V	Edges	Faces	Euler characteristic: V - E + F
Tetrahemihexahedron		6	12	7	1
Octahemioctahedron		12	24	12	0
Cubohemioctahedron		12	24	10	-2
Great icosahedron		12	30	20	2

 ${\sf Vertices}-{\sf Edges}+{\sf Faces}={\sf Euler}\;{\sf Characteristic}$

Images: Wikipedia

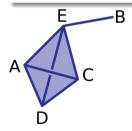
Liz Munch (MSU-CMSE) Lec 20 Tues, Nov 18, 2025 4 / 20

Generalized Euler Chacteristic

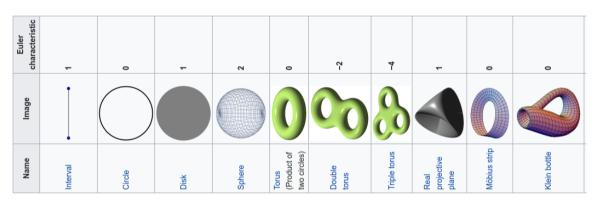
Definition

For any simplicial complex K where n_p is the number of p-dimensional simplices, the Euler characteristic is

$$\chi(K) = \sum_{p} (-1)^{p} n_{p}$$



Euler characteristic of spaces



Different Euler characteristics mean spaces must be topologically **different**

Different spaces might have the **same**Euler characteristics

Euler characteristic is an example of a topological signature

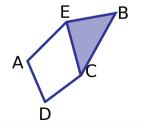
Euler characteristic and Betti numbers

Theorem

For any simplicial complex where n_p is the number of p-dimensional simplices,

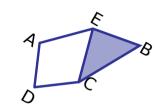
$$\sum_{\rho} (-1)^{\rho} n_{\rho} = \sum_{\rho} (-1)^{\rho} \beta_{\rho}$$

$$n_2 - n_1 + n_0 = \beta_2 - \beta_1 + \beta_0$$



Euler Characteristic Curve

$$E(a) = \chi(f^{-1}(-\infty, a])$$

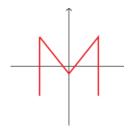


Section 2

Directional Transform

Direction induces a function

- Fix a subset of \mathbb{R}^d , A
- Fix a direction $\omega \in \mathbb{S}^{d-1}$
- $f_{\omega}: A \to \mathbb{R}, f_{\omega}(x) = \langle x, \omega \rangle$



Function induces an algebraic representation

- $\chi_{\omega} =$ Euler characteristic curve of f_{ω}
- $Pers_{k,\omega} = k$ -dimensional persistence diagram of f_{ω}

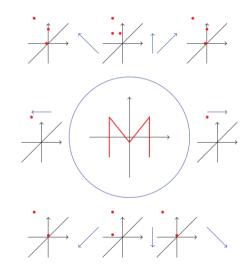


Figure from: Turner, Mukherjee, Boyer. Persistent homology transform for modeling shapes and surfaces.

The full transform(s)

$$PHT(A): \mathbb{S}^{d-1} \longrightarrow \mathcal{D}gm^d$$
 $\omega \longmapsto (Pers_{0,\omega}(A), \dots, Pers_{d-1,\omega}(A))$

$$ECT(A): \mathbb{S}^{d-1} \longrightarrow \text{Functions on } \mathbb{R}$$
 $\omega \longmapsto \chi_{\omega}(A)$

Meta transforms

 $\mathcal{M}_d = \mathsf{space}$ of all finite simplicial complexes embedded in \mathbb{R}^d

$$PHT: \mathcal{M}_d \longrightarrow \text{Functions from } \mathbb{S}^{d-1} \text{ to } \mathcal{D}gm^d$$
 $A \longmapsto \omega \mapsto (Pers_{0,\omega}(A), \dots, Pers_{d-1,\omega}(A))$

$$ECT: \mathcal{M}_d \longrightarrow \text{Functions from } \mathbb{S}^{d-1} \text{ to (Functions on } \mathbb{R})$$
 $A \longmapsto \omega \mapsto \chi_\omega(A)$

Turner's theorem

Theorem (Turner, Mukherjee, Boyer)

The ECT and PHT are injective on the space \mathcal{M}_d of finite simplicial complexes embedded in \mathbb{R}^2 or \mathbb{R}^3 .

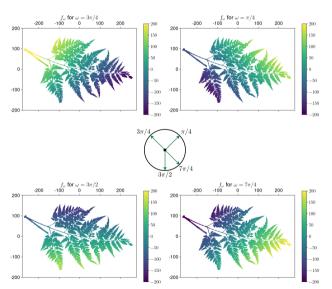
Generalizations by Ghrist et al; Curry et al

Section 3

The ECT

Fern example

Fern - Directional Transform

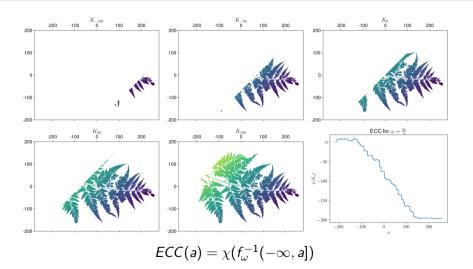


$$f_{\omega}(x) = \langle x, \omega \rangle$$

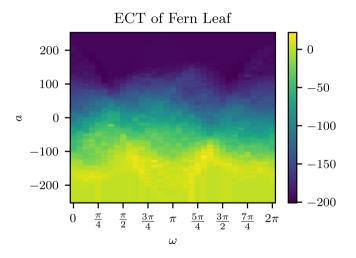
17 / 20

Liz Munch (MSU-CMSE) Lec 20 Tues, Nov 18, 2025

Fern - Thresholds



$$ECT(\omega, a) = \chi(f_{\omega}^{-1}(-\infty, a])$$



Next time

.